基于Hilbert–Schmidt独立性准则的因子模型条件独立性检验

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Xu , Qing Cheng
{"title":"基于Hilbert–Schmidt独立性准则的因子模型条件独立性检验","authors":"Kai Xu ,&nbsp;Qing Cheng","doi":"10.1016/j.jmva.2023.105241","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test of conditional independence in factor models via Hilbert–Schmidt independence criterion\",\"authors\":\"Kai Xu ,&nbsp;Qing Cheng\",\"doi\":\"10.1016/j.jmva.2023.105241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000878\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作涉及在因子模型设置下测试条件独立性。我们提出了一种新的基于Hilbert–Schmidt独立性准则(HSIC)的非高斯数据多元检验方法。从理论上讲,我们研究了我们的检验统计量在零假设和替代假设下的收敛性,并设计了一个bootstrap方案来近似其零分布,表明其一致性是合理的。在方法上,我们将基于HSIC的独立性测试方法推广到数据遵循因子模型结构的情况。我们的测试不需要对包括条件概率密度函数、条件累积分布函数和条件特征函数在内的函数形式进行非参数平滑估计,在零或可选条件下,它在计算上是有效的,并且在条件变量的维数被允许为大但有限的意义上是无量纲的。对非线性非高斯结构方程模型的进一步推广也作了详细的描述,并严格证明了其渐近性质。数值研究证明了我们提出的测试相对于几种现有测试的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test of conditional independence in factor models via Hilbert–Schmidt independence criterion

This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信