{"title":"基于Hilbert–Schmidt独立性准则的因子模型条件独立性检验","authors":"Kai Xu , Qing Cheng","doi":"10.1016/j.jmva.2023.105241","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test of conditional independence in factor models via Hilbert–Schmidt independence criterion\",\"authors\":\"Kai Xu , Qing Cheng\",\"doi\":\"10.1016/j.jmva.2023.105241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000878\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Test of conditional independence in factor models via Hilbert–Schmidt independence criterion
This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.