{"title":"椭圆度下散射矩阵潜根相等性的检验","authors":"Gaspard Bernard , Thomas Verdebout","doi":"10.1016/j.jmva.2023.105232","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we tackle the problem of testing <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mi>q</mi></mrow></msub><mo>:</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>></mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> are the scatter matrix eigenvalues of an elliptical distribution on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This is a classical problem in multivariate analysis which is very useful in dimension reduction. We analyse the problem using the Le Cam asymptotic theory of experiments and show that contrary to the testing problems on eigenvalues and eigenvectors of a scatter matrix tackled in Hallin et al. (2010), the non-specification of nuisance parameters has an asymptotic cost for testing <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mi>q</mi></mrow></msub></math></span>. We moreover derive signed-rank tests for the problem that enjoy the property of being asymptotically distribution-free under ellipticity. The van der Waerden rank test uniformly dominates the classical pseudo-Gaussian procedure for the problem. Numerical illustrations show the nice finite-sample properties of our tests.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On testing the equality of latent roots of scatter matrices under ellipticity\",\"authors\":\"Gaspard Bernard , Thomas Verdebout\",\"doi\":\"10.1016/j.jmva.2023.105232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we tackle the problem of testing <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mi>q</mi></mrow></msub><mo>:</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>></mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> are the scatter matrix eigenvalues of an elliptical distribution on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This is a classical problem in multivariate analysis which is very useful in dimension reduction. We analyse the problem using the Le Cam asymptotic theory of experiments and show that contrary to the testing problems on eigenvalues and eigenvectors of a scatter matrix tackled in Hallin et al. (2010), the non-specification of nuisance parameters has an asymptotic cost for testing <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn><mi>q</mi></mrow></msub></math></span>. We moreover derive signed-rank tests for the problem that enjoy the property of being asymptotically distribution-free under ellipticity. The van der Waerden rank test uniformly dominates the classical pseudo-Gaussian procedure for the problem. Numerical illustrations show the nice finite-sample properties of our tests.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23000787\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们解决了H0q:λq>;λq+1=…=λp,其中λ1,…,λp是Rp上椭圆分布的散射矩阵特征值。这是多元分析中的一个经典问题,在降维中非常有用。我们使用Le Cam渐近实验理论分析了这个问题,并表明与Hallin等人(2010)中解决的关于散射矩阵的特征值和特征向量的测试问题相反,扰动参数的非规范性对于测试H0q具有渐近代价。此外,我们还导出了椭圆度下具有渐近分布自由性质的问题的有符号秩检验。van der Waerden秩检验一致地支配了该问题的经典伪高斯过程。数值示例显示了我们测试的良好有限样本特性。
On testing the equality of latent roots of scatter matrices under ellipticity
In the present paper, we tackle the problem of testing , where are the scatter matrix eigenvalues of an elliptical distribution on . This is a classical problem in multivariate analysis which is very useful in dimension reduction. We analyse the problem using the Le Cam asymptotic theory of experiments and show that contrary to the testing problems on eigenvalues and eigenvectors of a scatter matrix tackled in Hallin et al. (2010), the non-specification of nuisance parameters has an asymptotic cost for testing . We moreover derive signed-rank tests for the problem that enjoy the property of being asymptotically distribution-free under ellipticity. The van der Waerden rank test uniformly dominates the classical pseudo-Gaussian procedure for the problem. Numerical illustrations show the nice finite-sample properties of our tests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.