{"title":"关联图的量子同构","authors":"Ada Chan , William J. Martin","doi":"10.1016/j.jctb.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>We show that any two Hadamard graphs on the same number of vertices are quantum isomorphic. This follows from a more general recipe for showing quantum isomorphism of graphs arising from certain association schemes. The main result is built from three tools. A remarkable recent result <span>[20]</span> of Mančinska and Roberson shows that graphs <em>G</em> and <em>H</em> are quantum isomorphic if and only if, for any planar graph <em>F</em>, the number of graph homomorphisms from <em>F</em> to <em>G</em> is equal to the number of graph homomorphisms from <em>F</em> to <em>H</em>. A generalization of partition functions called “scaffolds” <span>[23]</span> affords some basic reduction rules such as series-parallel reduction and can be applied to counting homomorphisms. The final tool is the classical theorem of Epifanov showing that any plane graph can be reduced to a single vertex and no edges by extended series-parallel reductions and Delta-Wye transformations. This last sort of transformation is available to us in the case of exactly triply regular association schemes. The paper includes open problems and directions for future research.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum isomorphism of graphs from association schemes\",\"authors\":\"Ada Chan , William J. Martin\",\"doi\":\"10.1016/j.jctb.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that any two Hadamard graphs on the same number of vertices are quantum isomorphic. This follows from a more general recipe for showing quantum isomorphism of graphs arising from certain association schemes. The main result is built from three tools. A remarkable recent result <span>[20]</span> of Mančinska and Roberson shows that graphs <em>G</em> and <em>H</em> are quantum isomorphic if and only if, for any planar graph <em>F</em>, the number of graph homomorphisms from <em>F</em> to <em>G</em> is equal to the number of graph homomorphisms from <em>F</em> to <em>H</em>. A generalization of partition functions called “scaffolds” <span>[23]</span> affords some basic reduction rules such as series-parallel reduction and can be applied to counting homomorphisms. The final tool is the classical theorem of Epifanov showing that any plane graph can be reduced to a single vertex and no edges by extended series-parallel reductions and Delta-Wye transformations. This last sort of transformation is available to us in the case of exactly triply regular association schemes. The paper includes open problems and directions for future research.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000813\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000813","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum isomorphism of graphs from association schemes
We show that any two Hadamard graphs on the same number of vertices are quantum isomorphic. This follows from a more general recipe for showing quantum isomorphism of graphs arising from certain association schemes. The main result is built from three tools. A remarkable recent result [20] of Mančinska and Roberson shows that graphs G and H are quantum isomorphic if and only if, for any planar graph F, the number of graph homomorphisms from F to G is equal to the number of graph homomorphisms from F to H. A generalization of partition functions called “scaffolds” [23] affords some basic reduction rules such as series-parallel reduction and can be applied to counting homomorphisms. The final tool is the classical theorem of Epifanov showing that any plane graph can be reduced to a single vertex and no edges by extended series-parallel reductions and Delta-Wye transformations. This last sort of transformation is available to us in the case of exactly triply regular association schemes. The paper includes open problems and directions for future research.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.