无反完备环图中的诱导路径

IF 1.2 1区 数学 Q1 MATHEMATICS
Tung Nguyen , Alex Scott , Paul Seymour
{"title":"无反完备环图中的诱导路径","authors":"Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.jctb.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let us say a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span><em>-free</em>, where <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> is an integer, if there do not exist <em>s</em> cycles of the graph that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even when <span><math><mi>s</mi><mo>=</mo><mn>2</mn></math></span>, is not well understood. For instance, until now we did not know how to test whether a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs have only a polynomial number of induced paths.</p><p>In this paper we prove Le's conjecture; indeed, we will show that for all <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>, there exists <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> has at most <span><math><mo>|</mo><mi>G</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>c</mi></mrow></msup></math></span> induced paths, where <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> is the number of vertices. This provides a poly-time algorithm to test if a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free, for all fixed <em>s</em>.</p><p>The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces the question to proving the same thing for graphs with no cycles of length four. Second, there is a recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> with no cycle of length four, there is a set of vertices that intersects every cycle, with size logarithmic in <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span>. And third, there is an argument that uses the result of Bonamy et al. to deduce the theorem. The last is the main content of this paper.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 321-339"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Induced paths in graphs without anticomplete cycles\",\"authors\":\"Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour\",\"doi\":\"10.1016/j.jctb.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let us say a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span><em>-free</em>, where <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> is an integer, if there do not exist <em>s</em> cycles of the graph that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even when <span><math><mi>s</mi><mo>=</mo><mn>2</mn></math></span>, is not well understood. For instance, until now we did not know how to test whether a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs have only a polynomial number of induced paths.</p><p>In this paper we prove Le's conjecture; indeed, we will show that for all <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>, there exists <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> has at most <span><math><mo>|</mo><mi>G</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>c</mi></mrow></msup></math></span> induced paths, where <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> is the number of vertices. This provides a poly-time algorithm to test if a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free, for all fixed <em>s</em>.</p><p>The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces the question to proving the same thing for graphs with no cycles of length four. Second, there is a recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> with no cycle of length four, there is a set of vertices that intersects every cycle, with size logarithmic in <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span>. And third, there is an argument that uses the result of Bonamy et al. to deduce the theorem. The last is the main content of this paper.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"164 \",\"pages\":\"Pages 321-339\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000850\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000850","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

假设一个图是Os自由的,其中s≥1是一个整数,如果该图不存在成对顶点不相交且没有边连接它们的s环。这种图的结构,即使当s=2时,也不能很好地理解。例如,直到现在,我们还不知道如何测试一个图在多项式时间内是否无O2;由于Ngoc Khang Le,存在一个开放的猜想,即O2自由图只有多项式数量的诱导路径。本文证明了Le的猜想;事实上,我们将证明对于所有s≥1,存在c>;0,使得每个Os自由图G最多有|G|c个诱导路径,其中|G|是顶点的数量。这提供了一个多时间算法来测试一个图对于所有固定的s是否是无Os的。证明有三部分。首先,由于Le,有一个简短而美丽的证明,它将问题简化为对没有长度为4的循环的图证明同样的事情。其次,Bonamy、Bonnet、Déprés、Esperet、Geniet、Hilaire、Thomassé和Wesolek最近的一个结果是,在每个没有长度为4的循环的Os自由图G中,存在一组与每个循环相交的顶点,其大小在|G|中是对数的。第三,利用Bonamy等人的结果推导了该定理。最后是本文的主要内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced paths in graphs without anticomplete cycles

Let us say a graph is Os-free, where s1 is an integer, if there do not exist s cycles of the graph that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even when s=2, is not well understood. For instance, until now we did not know how to test whether a graph is O2-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that O2-free graphs have only a polynomial number of induced paths.

In this paper we prove Le's conjecture; indeed, we will show that for all s1, there exists c>0 such that every Os-free graph G has at most |G|c induced paths, where |G| is the number of vertices. This provides a poly-time algorithm to test if a graph is Os-free, for all fixed s.

The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces the question to proving the same thing for graphs with no cycles of length four. Second, there is a recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in every Os-free graph G with no cycle of length four, there is a set of vertices that intersects every cycle, with size logarithmic in |G|. And third, there is an argument that uses the result of Bonamy et al. to deduce the theorem. The last is the main content of this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信