排除未成年人的克莱因瓶I.低连通性情况

IF 1.2 1区 数学 Q1 MATHEMATICS
Bojan Mohar , Petr Škoda
{"title":"排除未成年人的克莱因瓶I.低连通性情况","authors":"Bojan Mohar ,&nbsp;Petr Škoda","doi":"10.1016/j.jctb.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I we consider the structure of graphs with a 2-vertex-cut that are critical with respect to the Euler genus. A general theorem describing the building blocks is presented. These constituents, called hoppers and cascades, are classified for the case when Euler genus is small. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the Klein bottle is obtained. This is the first complete result about obstructions for embeddability of graphs in the Klein bottle, and the outcome is somewhat surprising in the sense that there are considerably fewer excluded minors than expected.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 299-320"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Excluded minors for the Klein bottle I. Low connectivity case\",\"authors\":\"Bojan Mohar ,&nbsp;Petr Škoda\",\"doi\":\"10.1016/j.jctb.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I we consider the structure of graphs with a 2-vertex-cut that are critical with respect to the Euler genus. A general theorem describing the building blocks is presented. These constituents, called hoppers and cascades, are classified for the case when Euler genus is small. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the Klein bottle is obtained. This is the first complete result about obstructions for embeddability of graphs in the Klein bottle, and the outcome is somewhat surprising in the sense that there are considerably fewer excluded minors than expected.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"164 \",\"pages\":\"Pages 299-320\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000849\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000849","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了曲面中嵌入性的关键图(最小排除子图)。在第一部分中,我们考虑具有2-顶点割的图的结构,这些图对于欧拉亏格是关键的。给出了一个描述积木的一般定理。这些成分被称为漏斗和级联,在欧拉属较小的情况下被分类。因此,获得了用于将图嵌入克莱因瓶中的连通性2的障碍物的完整列表。这是关于克莱因瓶中图形嵌入性障碍的第一个完整结果,结果有些令人惊讶,因为被排除的未成年人比预期的要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excluded minors for the Klein bottle I. Low connectivity case

Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I we consider the structure of graphs with a 2-vertex-cut that are critical with respect to the Euler genus. A general theorem describing the building blocks is presented. These constituents, called hoppers and cascades, are classified for the case when Euler genus is small. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the Klein bottle is obtained. This is the first complete result about obstructions for embeddability of graphs in the Klein bottle, and the outcome is somewhat surprising in the sense that there are considerably fewer excluded minors than expected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信