多边形短链的不连续图

IF 1.2 1区 数学 Q1 MATHEMATICS
János Pach , Gábor Tardos , Géza Tóth
{"title":"多边形短链的不连续图","authors":"János Pach ,&nbsp;Gábor Tardos ,&nbsp;Géza Tóth","doi":"10.1016/j.jctb.2023.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>disjointness graph</em> of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph <em>G</em> of any system of segments in the plane is <em>χ-bounded</em>, that is, its chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is upper bounded by a function of its clique number <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2<em>-way infinite</em> polygonal chains of length 3 is <em>χ</em>-bounded: for every such graph <em>G</em>, we have <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 29-43"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disjointness graphs of short polygonal chains\",\"authors\":\"János Pach ,&nbsp;Gábor Tardos ,&nbsp;Géza Tóth\",\"doi\":\"10.1016/j.jctb.2023.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>disjointness graph</em> of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph <em>G</em> of any system of segments in the plane is <em>χ-bounded</em>, that is, its chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is upper bounded by a function of its clique number <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2<em>-way infinite</em> polygonal chains of length 3 is <em>χ</em>-bounded: for every such graph <em>G</em>, we have <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"164 \",\"pages\":\"Pages 29-43\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000679\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000679","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

集合系统的不相交图是一个顶点是集合的图,两个顶点通过边连接,当且仅当它们不相交。已知平面上任意一个分段系统的不相交图G是χ-有界的,即其色数χ(G)是其团数ω(G)的函数的上界。我们还构造了长度为3的多边形链的系统,使得它们的不相交图具有任意大的周长和色数。在相反的方向上,我们证明了一类长度为3的(可能自相交的)双向无限多边形链的不相交图是χ-有界的:对于每一个这样的图G,我们都有χ(G)≤(ω(G))3+Ω(G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disjointness graphs of short polygonal chains

The disjointness graph of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph G of any system of segments in the plane is χ-bounded, that is, its chromatic number χ(G) is upper bounded by a function of its clique number ω(G).

Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2-way infinite polygonal chains of length 3 is χ-bounded: for every such graph G, we have χ(G)(ω(G))3+ω(G).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信