Maria Chudnovsky , Alex Scott , Paul Seymour , Sophie Spirkl
{"title":"无K6次的二部图","authors":"Maria Chudnovsky , Alex Scott , Paul Seymour , Sophie Spirkl","doi":"10.1016/j.jctb.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>A theorem of Mader shows that every graph with average degree at least eight has a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor, and this is false if we replace eight by any smaller constant. Replacing average degree by minimum degree seems to make little difference: we do not know whether all graphs with minimum degree at least seven have <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minors, but minimum degree six is certainly not enough. For every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> there are arbitrarily large graphs with average degree at least <span><math><mn>8</mn><mo>−</mo><mi>ε</mi></math></span> and minimum degree at least six, with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor.</p><p>But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> there are arbitrarily large bipartite graphs with average degree at least <span><math><mn>8</mn><mo>−</mo><mi>ε</mi></math></span> and no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor. But surprisingly, going to minimum degree now makes a significant difference. We will show that every bipartite graph with minimum degree at least six has a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor. Indeed, it is enough that every vertex in the larger part of the bipartition has degree at least six.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite graphs with no K6 minor\",\"authors\":\"Maria Chudnovsky , Alex Scott , Paul Seymour , Sophie Spirkl\",\"doi\":\"10.1016/j.jctb.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A theorem of Mader shows that every graph with average degree at least eight has a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor, and this is false if we replace eight by any smaller constant. Replacing average degree by minimum degree seems to make little difference: we do not know whether all graphs with minimum degree at least seven have <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minors, but minimum degree six is certainly not enough. For every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> there are arbitrarily large graphs with average degree at least <span><math><mn>8</mn><mo>−</mo><mi>ε</mi></math></span> and minimum degree at least six, with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor.</p><p>But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> there are arbitrarily large bipartite graphs with average degree at least <span><math><mn>8</mn><mo>−</mo><mi>ε</mi></math></span> and no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor. But surprisingly, going to minimum degree now makes a significant difference. We will show that every bipartite graph with minimum degree at least six has a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> minor. Indeed, it is enough that every vertex in the larger part of the bipartition has degree at least six.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000655\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000655","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A theorem of Mader shows that every graph with average degree at least eight has a minor, and this is false if we replace eight by any smaller constant. Replacing average degree by minimum degree seems to make little difference: we do not know whether all graphs with minimum degree at least seven have minors, but minimum degree six is certainly not enough. For every there are arbitrarily large graphs with average degree at least and minimum degree at least six, with no minor.
But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every there are arbitrarily large bipartite graphs with average degree at least and no minor. But surprisingly, going to minimum degree now makes a significant difference. We will show that every bipartite graph with minimum degree at least six has a minor. Indeed, it is enough that every vertex in the larger part of the bipartition has degree at least six.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.