Nan-Nan Zhou, Tong Wang, Yu-Xin Lin, Rong Xu, Hong-Xia Wu, Fei-Fei Ding, Fang Qiao, Zhen-Yu Du, Mei-Ling Zhang
{"title":"尿苷通过激活sirt1/AMPK信号通路和促进尼罗罗非鱼糖原合成来缓解高碳水化合物饮食诱导的代谢综合征","authors":"Nan-Nan Zhou, Tong Wang, Yu-Xin Lin, Rong Xu, Hong-Xia Wu, Fei-Fei Ding, Fang Qiao, Zhen-Yu Du, Mei-Ling Zhang","doi":"10.1016/j.aninu.2023.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (<em>Oreochromis niloticus</em>) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (<em>P</em> < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (<em>P</em> < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (<em>P</em> < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 56-66"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uridine alleviates high-carbohydrate diet-induced metabolic syndromes by activating sirt1/AMPK signaling pathway and promoting glycogen synthesis in Nile tilapia (Oreochromis niloticus)\",\"authors\":\"Nan-Nan Zhou, Tong Wang, Yu-Xin Lin, Rong Xu, Hong-Xia Wu, Fei-Fei Ding, Fang Qiao, Zhen-Yu Du, Mei-Ling Zhang\",\"doi\":\"10.1016/j.aninu.2023.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (<em>Oreochromis niloticus</em>) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (<em>P</em> < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (<em>P</em> < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (<em>P</em> < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"14 \",\"pages\":\"Pages 56-66\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240565452300046X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565452300046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uridine alleviates high-carbohydrate diet-induced metabolic syndromes by activating sirt1/AMPK signaling pathway and promoting glycogen synthesis in Nile tilapia (Oreochromis niloticus)
Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (Oreochromis niloticus) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (P < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (P < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (P < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.