Dikko Jeff Gafna , Joy A. Obando , Jesse M. Kalwij , Klara Dolos , Sebastian Schmidtlein
{"title":"气候变化对肯尼亚抗疟疾植物可用性的影响","authors":"Dikko Jeff Gafna , Joy A. Obando , Jesse M. Kalwij , Klara Dolos , Sebastian Schmidtlein","doi":"10.1016/j.ecochg.2023.100070","DOIUrl":null,"url":null,"abstract":"<div><p>In many rural East African areas, anti-malarial plants are commonly used as first-line treatment against malaria. However, spatially explicit information about the future availability of anti-malarial plant species and its relation to future suitable habitat for malaria vectors is limited. In this study we 1) model the distribution of anti-malarial plant and malaria vector species and assess the drivers of their distributions taking the example of the Samburu dryland in Kenya, 2) map the modeled overlap in this area, 3) assess the impact of future climate change on anti-malarial plant and malaria vector species and 4) report their future overlaps. Our results show that mean temperature of warmest quarter, precipitation of wettest quarter and mean temperature of coldest quarter were the most important environmental variables that affected the distribution of anti-malarial species. The effects of climate change will be detrimental, since most areas will witness huge losses in anti-malarial species habitat while only a few gained or remained stable under both SSP2-4.5 and SSP5-8.5 climate change scenarios by 2050s and 2070s. According to most of our scenarios, more than half of the anti-malarial species will become threatened by 2050s and 2070s. A comparison between distribution patterns of future anti-malarial species richness and malaria vector species suitable habitat suggests that the former will decrease considerably while the later will increase. Because the availability of anti-malarial species will decrease in the areas affected by malaria vectors, geographically targeted conservation strategies and further control measures against malaria vectors are all the more important.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"5 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Climate Change Impacts on the Availability of Anti-malarial Plants in Kenya\",\"authors\":\"Dikko Jeff Gafna , Joy A. Obando , Jesse M. Kalwij , Klara Dolos , Sebastian Schmidtlein\",\"doi\":\"10.1016/j.ecochg.2023.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In many rural East African areas, anti-malarial plants are commonly used as first-line treatment against malaria. However, spatially explicit information about the future availability of anti-malarial plant species and its relation to future suitable habitat for malaria vectors is limited. In this study we 1) model the distribution of anti-malarial plant and malaria vector species and assess the drivers of their distributions taking the example of the Samburu dryland in Kenya, 2) map the modeled overlap in this area, 3) assess the impact of future climate change on anti-malarial plant and malaria vector species and 4) report their future overlaps. Our results show that mean temperature of warmest quarter, precipitation of wettest quarter and mean temperature of coldest quarter were the most important environmental variables that affected the distribution of anti-malarial species. The effects of climate change will be detrimental, since most areas will witness huge losses in anti-malarial species habitat while only a few gained or remained stable under both SSP2-4.5 and SSP5-8.5 climate change scenarios by 2050s and 2070s. According to most of our scenarios, more than half of the anti-malarial species will become threatened by 2050s and 2070s. A comparison between distribution patterns of future anti-malarial species richness and malaria vector species suitable habitat suggests that the former will decrease considerably while the later will increase. Because the availability of anti-malarial species will decrease in the areas affected by malaria vectors, geographically targeted conservation strategies and further control measures against malaria vectors are all the more important.</p></div>\",\"PeriodicalId\":100260,\"journal\":{\"name\":\"Climate Change Ecology\",\"volume\":\"5 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Change Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666900523000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900523000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Climate Change Impacts on the Availability of Anti-malarial Plants in Kenya
In many rural East African areas, anti-malarial plants are commonly used as first-line treatment against malaria. However, spatially explicit information about the future availability of anti-malarial plant species and its relation to future suitable habitat for malaria vectors is limited. In this study we 1) model the distribution of anti-malarial plant and malaria vector species and assess the drivers of their distributions taking the example of the Samburu dryland in Kenya, 2) map the modeled overlap in this area, 3) assess the impact of future climate change on anti-malarial plant and malaria vector species and 4) report their future overlaps. Our results show that mean temperature of warmest quarter, precipitation of wettest quarter and mean temperature of coldest quarter were the most important environmental variables that affected the distribution of anti-malarial species. The effects of climate change will be detrimental, since most areas will witness huge losses in anti-malarial species habitat while only a few gained or remained stable under both SSP2-4.5 and SSP5-8.5 climate change scenarios by 2050s and 2070s. According to most of our scenarios, more than half of the anti-malarial species will become threatened by 2050s and 2070s. A comparison between distribution patterns of future anti-malarial species richness and malaria vector species suitable habitat suggests that the former will decrease considerably while the later will increase. Because the availability of anti-malarial species will decrease in the areas affected by malaria vectors, geographically targeted conservation strategies and further control measures against malaria vectors are all the more important.