{"title":"尼日利亚西南部土壤物理力学性质在不同耕作和种植制度下的变化","authors":"Funke Florence Akinola , Johnson Toyin Fasinmirin , Olawale Olugbenga Olanrewaju , Babatunde Sunday Ewulo , Idowu Ezekiel Olorunfemi","doi":"10.1016/j.farsys.2023.100050","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable agricultural strategies such as conservation agriculture (CA) and integrated land management are required to mitigate land degradation and food insecurity. This study was conducted to investigate the effects of different cropping systems: sole sorghum (SOR), sole cowpea (COW), sole soybean (SOY), sorghum-cowpea intercrop (SC), and sorghum-soybean intercrop (SS); and tillage practices: conventional tillage (CT), no tillage (NT), and compacted no till (NTc) on physical and mechanical properties of an Alfisol in Southwestern Nigeria. The experimental layout comprised a split plot design accommodating the 3 tillage and 5 cropping systems in a randomized complete block design with three replications. Undisturbed soil samples were collected from 0 to 15 cm, and 15–30 cm soil layers for the determination of soil bulk density (BD), total porosity (TP), and unconfined compressive strength (<em>q</em><sub><em>u</em>f</sub>). The results showed that bulk density was lower, while total porosity was higher under intercrops than monocrops in all the tillage treatments. Conventional tillage had the least BD compared to no tillage and compacted no till plots. Soil vane shear strength (Ʈ) and unconfined compressive strength (<em>q</em><sub><em>u</em>f</sub>) were generally lower under the intercrops than the sole sorghum plots. Averaged over the two soil depths, the mean soil <em>q</em><sub><em>u</em>f</sub> of SS intercrop was 1.28 times lower than the mean soil <em>q</em><sub><em>u</em>f</sub> of SOR but was 1.06 times higher than the mean soil <em>q</em><sub><em>u</em>f</sub> of SOY. SC intercrop had a 14.20% and a 9.15% lower average soil <em>q</em><sub><em>u</em>f</sub> than SOR and COW in 2019. Unconfined compressive strength and vanes shear strength significantly positively correlated with BD and negatively with TP, organic carbon (OC), organic matter (OM), and total nitrogen (N) in both cropping years. The research demonstrates that farming approaches that integrate soil cover preservation and minimal soil disturbance with diverse cropping systems improve soil physical and mechanical behavior.</p></div>","PeriodicalId":100522,"journal":{"name":"Farming System","volume":"1 3","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Changes in soil physical and mechanical properties under different tillage and cropping systems in alfisol soil of southwestern Nigeria\",\"authors\":\"Funke Florence Akinola , Johnson Toyin Fasinmirin , Olawale Olugbenga Olanrewaju , Babatunde Sunday Ewulo , Idowu Ezekiel Olorunfemi\",\"doi\":\"10.1016/j.farsys.2023.100050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable agricultural strategies such as conservation agriculture (CA) and integrated land management are required to mitigate land degradation and food insecurity. This study was conducted to investigate the effects of different cropping systems: sole sorghum (SOR), sole cowpea (COW), sole soybean (SOY), sorghum-cowpea intercrop (SC), and sorghum-soybean intercrop (SS); and tillage practices: conventional tillage (CT), no tillage (NT), and compacted no till (NTc) on physical and mechanical properties of an Alfisol in Southwestern Nigeria. The experimental layout comprised a split plot design accommodating the 3 tillage and 5 cropping systems in a randomized complete block design with three replications. Undisturbed soil samples were collected from 0 to 15 cm, and 15–30 cm soil layers for the determination of soil bulk density (BD), total porosity (TP), and unconfined compressive strength (<em>q</em><sub><em>u</em>f</sub>). The results showed that bulk density was lower, while total porosity was higher under intercrops than monocrops in all the tillage treatments. Conventional tillage had the least BD compared to no tillage and compacted no till plots. Soil vane shear strength (Ʈ) and unconfined compressive strength (<em>q</em><sub><em>u</em>f</sub>) were generally lower under the intercrops than the sole sorghum plots. Averaged over the two soil depths, the mean soil <em>q</em><sub><em>u</em>f</sub> of SS intercrop was 1.28 times lower than the mean soil <em>q</em><sub><em>u</em>f</sub> of SOR but was 1.06 times higher than the mean soil <em>q</em><sub><em>u</em>f</sub> of SOY. SC intercrop had a 14.20% and a 9.15% lower average soil <em>q</em><sub><em>u</em>f</sub> than SOR and COW in 2019. Unconfined compressive strength and vanes shear strength significantly positively correlated with BD and negatively with TP, organic carbon (OC), organic matter (OM), and total nitrogen (N) in both cropping years. The research demonstrates that farming approaches that integrate soil cover preservation and minimal soil disturbance with diverse cropping systems improve soil physical and mechanical behavior.</p></div>\",\"PeriodicalId\":100522,\"journal\":{\"name\":\"Farming System\",\"volume\":\"1 3\",\"pages\":\"Article 100050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Farming System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949911923000527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Farming System","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949911923000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Changes in soil physical and mechanical properties under different tillage and cropping systems in alfisol soil of southwestern Nigeria
Sustainable agricultural strategies such as conservation agriculture (CA) and integrated land management are required to mitigate land degradation and food insecurity. This study was conducted to investigate the effects of different cropping systems: sole sorghum (SOR), sole cowpea (COW), sole soybean (SOY), sorghum-cowpea intercrop (SC), and sorghum-soybean intercrop (SS); and tillage practices: conventional tillage (CT), no tillage (NT), and compacted no till (NTc) on physical and mechanical properties of an Alfisol in Southwestern Nigeria. The experimental layout comprised a split plot design accommodating the 3 tillage and 5 cropping systems in a randomized complete block design with three replications. Undisturbed soil samples were collected from 0 to 15 cm, and 15–30 cm soil layers for the determination of soil bulk density (BD), total porosity (TP), and unconfined compressive strength (quf). The results showed that bulk density was lower, while total porosity was higher under intercrops than monocrops in all the tillage treatments. Conventional tillage had the least BD compared to no tillage and compacted no till plots. Soil vane shear strength (Ʈ) and unconfined compressive strength (quf) were generally lower under the intercrops than the sole sorghum plots. Averaged over the two soil depths, the mean soil quf of SS intercrop was 1.28 times lower than the mean soil quf of SOR but was 1.06 times higher than the mean soil quf of SOY. SC intercrop had a 14.20% and a 9.15% lower average soil quf than SOR and COW in 2019. Unconfined compressive strength and vanes shear strength significantly positively correlated with BD and negatively with TP, organic carbon (OC), organic matter (OM), and total nitrogen (N) in both cropping years. The research demonstrates that farming approaches that integrate soil cover preservation and minimal soil disturbance with diverse cropping systems improve soil physical and mechanical behavior.