{"title":"2021年海地7.2级地震:空间大地测量和贝叶斯估计揭示的盲逆冲断裂","authors":"Hidayat Panuntun","doi":"10.1016/j.jog.2023.101996","DOIUrl":null,"url":null,"abstract":"<div><p>On 14 August 2021, a large earthquake struck the southern region of Haiti. The epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault (EPGF) zone, a major active fault with a strike-slip mechanism in the southern part of Hispaniola. Since the epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault zone, one might think that the EPGF is the causative fault. Using a Bayesian approach, the Sentinel-1 data is then utilized to investigate the seismogenic fault responsible for the 2021 Haiti earthquake. The Bayesian inversion indicated that the mainshock ruptured a north-dipping fault with a strike and a dip of 270.9° and 69.2°, respectively, and buried at a depth of 10.3 km from the earth’s surface. The preferred slip model showed that the rupture did not reach the surface and was confined at a depth of ∼6 km to ∼32 km. The preferred fault geometry is in good agreement with the relocated aftershock distribution and is inconsistent with the EPGF system configuration. It indicates that the EPGF is probably not the seismogenic fault responsible for the 2021 Haiti earthquake. Instead, results suggested that the 2021 Haiti earthquake ruptured an unmapped blind fault.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":"158 ","pages":"Article 101996"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 2021 Mw 7.2 Haiti earthquake: Blind thrust rupture revealed by space geodetic observations and Bayesian estimation\",\"authors\":\"Hidayat Panuntun\",\"doi\":\"10.1016/j.jog.2023.101996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On 14 August 2021, a large earthquake struck the southern region of Haiti. The epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault (EPGF) zone, a major active fault with a strike-slip mechanism in the southern part of Hispaniola. Since the epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault zone, one might think that the EPGF is the causative fault. Using a Bayesian approach, the Sentinel-1 data is then utilized to investigate the seismogenic fault responsible for the 2021 Haiti earthquake. The Bayesian inversion indicated that the mainshock ruptured a north-dipping fault with a strike and a dip of 270.9° and 69.2°, respectively, and buried at a depth of 10.3 km from the earth’s surface. The preferred slip model showed that the rupture did not reach the surface and was confined at a depth of ∼6 km to ∼32 km. The preferred fault geometry is in good agreement with the relocated aftershock distribution and is inconsistent with the EPGF system configuration. It indicates that the EPGF is probably not the seismogenic fault responsible for the 2021 Haiti earthquake. Instead, results suggested that the 2021 Haiti earthquake ruptured an unmapped blind fault.</p></div>\",\"PeriodicalId\":54823,\"journal\":{\"name\":\"Journal of Geodynamics\",\"volume\":\"158 \",\"pages\":\"Article 101996\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264370723000364\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370723000364","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The 2021 Mw 7.2 Haiti earthquake: Blind thrust rupture revealed by space geodetic observations and Bayesian estimation
On 14 August 2021, a large earthquake struck the southern region of Haiti. The epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault (EPGF) zone, a major active fault with a strike-slip mechanism in the southern part of Hispaniola. Since the epicenter of this earthquake is located relatively close to the Enriquillo–Plantain Garden Fault zone, one might think that the EPGF is the causative fault. Using a Bayesian approach, the Sentinel-1 data is then utilized to investigate the seismogenic fault responsible for the 2021 Haiti earthquake. The Bayesian inversion indicated that the mainshock ruptured a north-dipping fault with a strike and a dip of 270.9° and 69.2°, respectively, and buried at a depth of 10.3 km from the earth’s surface. The preferred slip model showed that the rupture did not reach the surface and was confined at a depth of ∼6 km to ∼32 km. The preferred fault geometry is in good agreement with the relocated aftershock distribution and is inconsistent with the EPGF system configuration. It indicates that the EPGF is probably not the seismogenic fault responsible for the 2021 Haiti earthquake. Instead, results suggested that the 2021 Haiti earthquake ruptured an unmapped blind fault.
期刊介绍:
The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.