小光滑度函数类积分范数的采样离散误差

IF 0.9 3区 数学 Q2 MATHEMATICS
V.N. Temlyakov
{"title":"小光滑度函数类积分范数的采样离散误差","authors":"V.N. Temlyakov","doi":"10.1016/j.jat.2023.105913","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider infinitely dimensional classes of functions and instead of the relative error setting, which was used in previous papers on the integral norm discretization, we consider the absolute error setting. We demonstrate how known results from two areas of research – supervised learning theory and numerical integration – can be used in sampling discretization of the square norm on different function classes. We prove a general result, which shows that the sequence of entropy numbers of a function class in the uniform norm dominates, in a certain sense, the sequence of errors of sampling discretization of the square norm of this class. Then we use this result for establishing new error bounds for sampling discretization of the square norm on classes of </span>multivariate functions with mixed smoothness.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling discretization error of integral norms for function classes with small smoothness\",\"authors\":\"V.N. Temlyakov\",\"doi\":\"10.1016/j.jat.2023.105913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We consider infinitely dimensional classes of functions and instead of the relative error setting, which was used in previous papers on the integral norm discretization, we consider the absolute error setting. We demonstrate how known results from two areas of research – supervised learning theory and numerical integration – can be used in sampling discretization of the square norm on different function classes. We prove a general result, which shows that the sequence of entropy numbers of a function class in the uniform norm dominates, in a certain sense, the sequence of errors of sampling discretization of the square norm of this class. Then we use this result for establishing new error bounds for sampling discretization of the square norm on classes of </span>multivariate functions with mixed smoothness.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000515\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000515","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑无限维函数类,并考虑绝对误差设置,而不是以前关于积分范数离散化的论文中使用的相对误差设置。我们展示了监督学习理论和数值积分这两个研究领域的已知结果如何用于不同函数类上平方范数的采样离散化。我们证明了一个一般结果,该结果表明,在某种意义上,一致范数中函数类的熵数序列支配了该类平方范数采样离散化的误差序列。然后,我们用这个结果来建立新的误差界,用于具有混合光滑性的多变量函数类上平方范数的采样离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling discretization error of integral norms for function classes with small smoothness

We consider infinitely dimensional classes of functions and instead of the relative error setting, which was used in previous papers on the integral norm discretization, we consider the absolute error setting. We demonstrate how known results from two areas of research – supervised learning theory and numerical integration – can be used in sampling discretization of the square norm on different function classes. We prove a general result, which shows that the sequence of entropy numbers of a function class in the uniform norm dominates, in a certain sense, the sequence of errors of sampling discretization of the square norm of this class. Then we use this result for establishing new error bounds for sampling discretization of the square norm on classes of multivariate functions with mixed smoothness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信