受电弓方程的Jacobi-theta函数分析研究

IF 0.9 3区 数学 Q2 MATHEMATICS
Changgui Zhang
{"title":"受电弓方程的Jacobi-theta函数分析研究","authors":"Changgui Zhang","doi":"10.1016/j.jat.2023.105974","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to use the analytic theory of linear <span><math><mi>q</mi></math></span>-difference equations for the study of the functional-differential equation <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mi>y</mi><mrow><mo>(</mo><mi>q</mi><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mi>y</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> are two non-zero real or complex numbers. When <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span>, the associated Cauchy problem admits a unique power series solution, </span><span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mfrac><mrow><msub><mrow><mrow><mo>(</mo><mo>−</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mi>n</mi><mo>!</mo></mrow></mfrac><mspace></mspace><msup><mrow><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, that converges in the whole complex <span><math><mi>x</mi></math></span><span>-plane. The principal result obtained in the paper explains how to express this entire function solution into a linear combination<span><span> of solutions at infinity with the help of integral representations involving Jacobi theta functions. As a by-product, this connection formula between zero and infinity allows one to rediscover the classic theorem of Kato and McLeod on the </span>asymptotic behavior of the solutions over the real axis.</span></span></p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical study of the pantograph equation using Jacobi theta functions\",\"authors\":\"Changgui Zhang\",\"doi\":\"10.1016/j.jat.2023.105974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to use the analytic theory of linear <span><math><mi>q</mi></math></span>-difference equations for the study of the functional-differential equation <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mi>y</mi><mrow><mo>(</mo><mi>q</mi><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mi>y</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> are two non-zero real or complex numbers. When <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span>, the associated Cauchy problem admits a unique power series solution, </span><span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mfrac><mrow><msub><mrow><mrow><mo>(</mo><mo>−</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mi>n</mi><mo>!</mo></mrow></mfrac><mspace></mspace><msup><mrow><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, that converges in the whole complex <span><math><mi>x</mi></math></span><span>-plane. The principal result obtained in the paper explains how to express this entire function solution into a linear combination<span><span> of solutions at infinity with the help of integral representations involving Jacobi theta functions. As a by-product, this connection formula between zero and infinity allows one to rediscover the classic theorem of Kato and McLeod on the </span>asymptotic behavior of the solutions over the real axis.</span></span></p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523001120\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用线性q-差分方程的解析理论研究函数微分方程y′(x)=ay(qx)+by(x),其中a和b是两个非零实数或复数。当0<;q<;1和y(0)=1时,相关的Cauchy问题得到一个唯一的幂级数解,∑n≥0(−a/b;q)nn!(bx)n,其在整个复x平面上收敛。本文获得的主要结果解释了如何在涉及Jacobiθ函数的积分表示的帮助下,将整个函数解表示为无穷远处解的线性组合。作为副产品,这个零和无穷大之间的联系公式允许我们重新发现Kato和McLeod关于实轴上解的渐近行为的经典定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical study of the pantograph equation using Jacobi theta functions

The aim of this paper is to use the analytic theory of linear q-difference equations for the study of the functional-differential equation y(x)=ay(qx)+by(x), where a and b are two non-zero real or complex numbers. When 0<q<1 and y(0)=1, the associated Cauchy problem admits a unique power series solution, n0(a/b;q)nn!(bx)n, that converges in the whole complex x-plane. The principal result obtained in the paper explains how to express this entire function solution into a linear combination of solutions at infinity with the help of integral representations involving Jacobi theta functions. As a by-product, this connection formula between zero and infinity allows one to rediscover the classic theorem of Kato and McLeod on the asymptotic behavior of the solutions over the real axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信