加权Bergman空间中的正交多项式

IF 0.9 3区 数学 Q2 MATHEMATICS
Erwin Miña-Díaz
{"title":"加权Bergman空间中的正交多项式","authors":"Erwin Miña-Díaz","doi":"10.1016/j.jat.2023.105972","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>w</mi></math></span> be a weight on the unit disk <span><math><mi>D</mi></math></span> having the form <span><span><span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mo>|</mo><mi>v</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msup><mrow><mfenced><mrow><mfrac><mrow><mi>z</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mn>1</mn><mo>−</mo><mi>z</mi><msub><mrow><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>k</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mspace></mspace><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><mo>−</mo><mn>2</mn><mo>,</mo><mspace></mspace><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mn>1</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>v</mi></math></span> is analytic and free of zeros in <span><math><mover><mrow><mi>D</mi></mrow><mo>¯</mo></mover></math></span>, and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be the sequence of polynomials (<span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mi>n</mi></math></span>) orthonormal over <span><math><mi>D</mi></math></span> with respect to <span><math><mi>w</mi></math></span>. We give an integral representation for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> from which it is in principle possible to derive its asymptotic behavior as </span><span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> at every point <span><math><mi>z</mi></math></span> of the complex plane, the asymptotic analysis of the integral being primarily dependent on the nature of the first singularities encountered by the function <span><math><mrow><mi>v</mi><msup><mrow><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>z</mi><msub><mrow><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal polynomials in weighted Bergman spaces\",\"authors\":\"Erwin Miña-Díaz\",\"doi\":\"10.1016/j.jat.2023.105972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>w</mi></math></span> be a weight on the unit disk <span><math><mi>D</mi></math></span> having the form <span><span><span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mo>|</mo><mi>v</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msup><mrow><mfenced><mrow><mfrac><mrow><mi>z</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mn>1</mn><mo>−</mo><mi>z</mi><msub><mrow><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>k</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mspace></mspace><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><mo>−</mo><mn>2</mn><mo>,</mo><mspace></mspace><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mn>1</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>v</mi></math></span> is analytic and free of zeros in <span><math><mover><mrow><mi>D</mi></mrow><mo>¯</mo></mover></math></span>, and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be the sequence of polynomials (<span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mi>n</mi></math></span>) orthonormal over <span><math><mi>D</mi></math></span> with respect to <span><math><mi>w</mi></math></span>. We give an integral representation for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> from which it is in principle possible to derive its asymptotic behavior as </span><span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> at every point <span><math><mi>z</mi></math></span> of the complex plane, the asymptotic analysis of the integral being primarily dependent on the nature of the first singularities encountered by the function <span><math><mrow><mi>v</mi><msup><mrow><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>z</mi><msub><mrow><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523001107\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设w是单位圆盘D上的权重,其形式为w(z)=|v(z)|2πk=1sz−ak1−za’kmk,mk>;−2,|ak|<;1,其中v是解析的,并且在D’中没有零,并且设(pn)n=0∞是D上关于w的正交多项式序列(n阶pn)。我们给出了pn的积分表示,从中原则上可以导出其渐近行为为n→∞ 在复平面的每个点z,积分的渐近分析主要取决于函数v(z)−1πk=1s(1−za’k)−1遇到的第一个奇点的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal polynomials in weighted Bergman spaces

Let w be a weight on the unit disk D having the form w(z)=|v(z)|2k=1szak1za¯kmk,mk>2,|ak|<1,where v is analytic and free of zeros in D¯, and let (pn)n=0 be the sequence of polynomials (pn of degree n) orthonormal over D with respect to w. We give an integral representation for pn from which it is in principle possible to derive its asymptotic behavior as n at every point z of the complex plane, the asymptotic analysis of the integral being primarily dependent on the nature of the first singularities encountered by the function v(z)1k=1s(1za¯k)1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信