用GARCH模型对标准普尔500指数的回报进行建模

Rodrigo Alfaro, Alejandra Inzunza
{"title":"用GARCH模型对标准普尔500指数的回报进行建模","authors":"Rodrigo Alfaro,&nbsp;Alejandra Inzunza","doi":"10.1016/j.latcb.2023.100096","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides several estimates of the GARCH models’ parameters for the S&amp;P500 index, based on returns and CBOE VIX. Using a daily sample collected from 2007 to 2022, we can conclude that adding the VIX information improves the estimates of the long-term volatility. By providing an external validation of the model using an option-based index reported by the Federal Reserve of Minneapolis, we are able to propose a calibrate model to track the tail-risk of this stock index.</p></div>","PeriodicalId":100867,"journal":{"name":"Latin American Journal of Central Banking","volume":"4 3","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling S&P500 returns with GARCH models\",\"authors\":\"Rodrigo Alfaro,&nbsp;Alejandra Inzunza\",\"doi\":\"10.1016/j.latcb.2023.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper provides several estimates of the GARCH models’ parameters for the S&amp;P500 index, based on returns and CBOE VIX. Using a daily sample collected from 2007 to 2022, we can conclude that adding the VIX information improves the estimates of the long-term volatility. By providing an external validation of the model using an option-based index reported by the Federal Reserve of Minneapolis, we are able to propose a calibrate model to track the tail-risk of this stock index.</p></div>\",\"PeriodicalId\":100867,\"journal\":{\"name\":\"Latin American Journal of Central Banking\",\"volume\":\"4 3\",\"pages\":\"Article 100096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Central Banking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666143823000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Central Banking","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666143823000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了GARCH模型参数对S&;P500指数,基于收益率和CBOE波动率指数。使用2007年至2022年收集的每日样本,我们可以得出结论,添加波动率指数信息可以提高对长期波动率的估计。通过使用明尼阿波利斯联邦储备局报告的基于期权的指数对模型进行外部验证,我们能够提出一个校准模型来跟踪该股指的尾部风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling S&P500 returns with GARCH models

This paper provides several estimates of the GARCH models’ parameters for the S&P500 index, based on returns and CBOE VIX. Using a daily sample collected from 2007 to 2022, we can conclude that adding the VIX information improves the estimates of the long-term volatility. By providing an external validation of the model using an option-based index reported by the Federal Reserve of Minneapolis, we are able to propose a calibrate model to track the tail-risk of this stock index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信