峰坑极大Condorcet域的一个分类

IF 0.5 4区 经济学 Q4 ECONOMICS
Guanhao Li
{"title":"峰坑极大Condorcet域的一个分类","authors":"Guanhao Li","doi":"10.1016/j.mathsocsci.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a weaker notion of separability for set-systems and demonstrate that the class of maximal weakly separated systems precisely corresponds to the class of peak-pit maximal Condorcet domains. Additionally, we present a generalisation of arrangements of pseudolines and establish that the sets of chamber sets from them coincide with maximal weakly separated systems, enabling the construction of all peak-pit maximal Condorcet domains. Furthermore, we reveal that peak-pit maximal Condorcet domains coincide with connected maximal Condorcet domains.</p></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"125 ","pages":"Pages 42-57"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A classification of peak-pit maximal Condorcet domains\",\"authors\":\"Guanhao Li\",\"doi\":\"10.1016/j.mathsocsci.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a weaker notion of separability for set-systems and demonstrate that the class of maximal weakly separated systems precisely corresponds to the class of peak-pit maximal Condorcet domains. Additionally, we present a generalisation of arrangements of pseudolines and establish that the sets of chamber sets from them coincide with maximal weakly separated systems, enabling the construction of all peak-pit maximal Condorcet domains. Furthermore, we reveal that peak-pit maximal Condorcet domains coincide with connected maximal Condorcet domains.</p></div>\",\"PeriodicalId\":51118,\"journal\":{\"name\":\"Mathematical Social Sciences\",\"volume\":\"125 \",\"pages\":\"Pages 42-57\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Social Sciences\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165489623000586\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489623000586","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们引入了集合系统可分性的一个较弱的概念,并证明了一类极大弱分离系统恰好对应于一类峰坑极大Condorcet域。此外,我们对伪线的排列进行了推广,并确定了来自伪线的腔组集合与最大弱分离系统一致,从而能够构建所有峰坑最大孔域。此外,我们还揭示了峰坑最大孔域与连通最大孔域的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of peak-pit maximal Condorcet domains

In this paper, we introduce a weaker notion of separability for set-systems and demonstrate that the class of maximal weakly separated systems precisely corresponds to the class of peak-pit maximal Condorcet domains. Additionally, we present a generalisation of arrangements of pseudolines and establish that the sets of chamber sets from them coincide with maximal weakly separated systems, enabling the construction of all peak-pit maximal Condorcet domains. Furthermore, we reveal that peak-pit maximal Condorcet domains coincide with connected maximal Condorcet domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Social Sciences
Mathematical Social Sciences 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
55
审稿时长
59 days
期刊介绍: The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences. Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models. Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信