Xianshun Sun , Lei Li , Sen Jin , Wei Shao , Hui Wang , Xiaodong Zhang , Yi Xie
{"title":"界面增强的Bi3O4Br/Bi2O3异质结高效选择性光氧化","authors":"Xianshun Sun , Lei Li , Sen Jin , Wei Shao , Hui Wang , Xiaodong Zhang , Yi Xie","doi":"10.1016/j.esci.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Selective photooxidation of amines to biologically important imines is in great demand for industrial applications. The conversion efficiency and selectivity of the process are strongly dependent on the activation of photocatalytic molecular oxygen (O<sub>2</sub>) into reactive oxygen species. Here, we propose the construction of rich interfaces to boost photocatalytic O<sub>2</sub> activation by facilitating the transfer of photocarriers. Taking Bi<sub>3</sub>O<sub>4</sub>Br/Bi<sub>2</sub>O<sub>3</sub> heterojunctions as an example, rich interfaces facilitate electron transfer to adsorbed O<sub>2</sub> for superoxide (<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mo>·</mo><mo>−</mo></mrow></msup></mrow></math></span>) generation, thus achieving ≥ 98% conversion efficiency and selectivity for benzylamine and benzylamine derivatives. This study offers a valid method to design advanced photocatalysts for selective oxidation reactions.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 2","pages":"Article 100095"},"PeriodicalIF":42.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions\",\"authors\":\"Xianshun Sun , Lei Li , Sen Jin , Wei Shao , Hui Wang , Xiaodong Zhang , Yi Xie\",\"doi\":\"10.1016/j.esci.2023.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selective photooxidation of amines to biologically important imines is in great demand for industrial applications. The conversion efficiency and selectivity of the process are strongly dependent on the activation of photocatalytic molecular oxygen (O<sub>2</sub>) into reactive oxygen species. Here, we propose the construction of rich interfaces to boost photocatalytic O<sub>2</sub> activation by facilitating the transfer of photocarriers. Taking Bi<sub>3</sub>O<sub>4</sub>Br/Bi<sub>2</sub>O<sub>3</sub> heterojunctions as an example, rich interfaces facilitate electron transfer to adsorbed O<sub>2</sub> for superoxide (<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mo>·</mo><mo>−</mo></mrow></msup></mrow></math></span>) generation, thus achieving ≥ 98% conversion efficiency and selectivity for benzylamine and benzylamine derivatives. This study offers a valid method to design advanced photocatalysts for selective oxidation reactions.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 2\",\"pages\":\"Article 100095\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions
Selective photooxidation of amines to biologically important imines is in great demand for industrial applications. The conversion efficiency and selectivity of the process are strongly dependent on the activation of photocatalytic molecular oxygen (O2) into reactive oxygen species. Here, we propose the construction of rich interfaces to boost photocatalytic O2 activation by facilitating the transfer of photocarriers. Taking Bi3O4Br/Bi2O3 heterojunctions as an example, rich interfaces facilitate electron transfer to adsorbed O2 for superoxide () generation, thus achieving ≥ 98% conversion efficiency and selectivity for benzylamine and benzylamine derivatives. This study offers a valid method to design advanced photocatalysts for selective oxidation reactions.