Maria M. Robinson, Isabella C. DeStefano, Edward Vul, Timothy F. Brady
{"title":"人们是如何从感官证据中建立视觉记忆表征的?重温两款经典车型","authors":"Maria M. Robinson, Isabella C. DeStefano, Edward Vul, Timothy F. Brady","doi":"10.1016/j.jmp.2023.102805","DOIUrl":null,"url":null,"abstract":"<div><p><span>In many decision tasks, we have a set of alternative choices and are faced with the problem of how to use our latent beliefs and preferences about each alternative to make a single choice. Cognitive and decision models typically presume that beliefs and preferences are distilled to a scalar latent strength for each alternative, but it is also critical to model how people use these latent strengths to choose a single alternative. Most models follow one of two traditions to establish this link. Modern psychophysics<span> and memory researchers make use of signal detection theory, assuming that latent strengths are perturbed by noise, and the highest resulting signal is selected. By contrast, many modern decision theoretic modeling and machine learning approaches use the softmax function (which is based on Luce’s choice axiom; Luce, 1959) to give some weight to non-maximal-strength alternatives. Despite the prominence of these two theories of choice, current approaches rarely address the connection between them, and the choice of one or the other appears more motivated by the tradition in the relevant literature than by theoretical or empirical reasons to prefer one theory to the other. The goal of the current work is to revisit this topic by elucidating which of these two models provides a better characterization of latent processes in </span></span><span><math><mi>m</mi></math></span>-alternative decision tasks, with a particular focus on memory tasks. In a set of visual memory experiments, we show that, within the same experimental design, the softmax parameter <span><math><mi>β</mi></math></span> varies across <span><math><mi>m</mi></math></span>-alternatives, whereas the parameter <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span><span> of the signal-detection model is stable. Together, our findings indicate that replacing softmax with signal-detection link models would yield more generalizable predictions across changes in task structure. More ambitiously, the invariance of signal detection model parameters across different tasks suggests that the parametric<span> assumptions of these models may be more than just a mathematical convenience, but reflect something real about human decision-making.</span></span></p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"117 ","pages":"Article 102805"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do people build up visual memory representations from sensory evidence? Revisiting two classic models of choice\",\"authors\":\"Maria M. Robinson, Isabella C. DeStefano, Edward Vul, Timothy F. Brady\",\"doi\":\"10.1016/j.jmp.2023.102805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In many decision tasks, we have a set of alternative choices and are faced with the problem of how to use our latent beliefs and preferences about each alternative to make a single choice. Cognitive and decision models typically presume that beliefs and preferences are distilled to a scalar latent strength for each alternative, but it is also critical to model how people use these latent strengths to choose a single alternative. Most models follow one of two traditions to establish this link. Modern psychophysics<span> and memory researchers make use of signal detection theory, assuming that latent strengths are perturbed by noise, and the highest resulting signal is selected. By contrast, many modern decision theoretic modeling and machine learning approaches use the softmax function (which is based on Luce’s choice axiom; Luce, 1959) to give some weight to non-maximal-strength alternatives. Despite the prominence of these two theories of choice, current approaches rarely address the connection between them, and the choice of one or the other appears more motivated by the tradition in the relevant literature than by theoretical or empirical reasons to prefer one theory to the other. The goal of the current work is to revisit this topic by elucidating which of these two models provides a better characterization of latent processes in </span></span><span><math><mi>m</mi></math></span>-alternative decision tasks, with a particular focus on memory tasks. In a set of visual memory experiments, we show that, within the same experimental design, the softmax parameter <span><math><mi>β</mi></math></span> varies across <span><math><mi>m</mi></math></span>-alternatives, whereas the parameter <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span><span> of the signal-detection model is stable. Together, our findings indicate that replacing softmax with signal-detection link models would yield more generalizable predictions across changes in task structure. More ambitiously, the invariance of signal detection model parameters across different tasks suggests that the parametric<span> assumptions of these models may be more than just a mathematical convenience, but reflect something real about human decision-making.</span></span></p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"117 \",\"pages\":\"Article 102805\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000615\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000615","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
How do people build up visual memory representations from sensory evidence? Revisiting two classic models of choice
In many decision tasks, we have a set of alternative choices and are faced with the problem of how to use our latent beliefs and preferences about each alternative to make a single choice. Cognitive and decision models typically presume that beliefs and preferences are distilled to a scalar latent strength for each alternative, but it is also critical to model how people use these latent strengths to choose a single alternative. Most models follow one of two traditions to establish this link. Modern psychophysics and memory researchers make use of signal detection theory, assuming that latent strengths are perturbed by noise, and the highest resulting signal is selected. By contrast, many modern decision theoretic modeling and machine learning approaches use the softmax function (which is based on Luce’s choice axiom; Luce, 1959) to give some weight to non-maximal-strength alternatives. Despite the prominence of these two theories of choice, current approaches rarely address the connection between them, and the choice of one or the other appears more motivated by the tradition in the relevant literature than by theoretical or empirical reasons to prefer one theory to the other. The goal of the current work is to revisit this topic by elucidating which of these two models provides a better characterization of latent processes in -alternative decision tasks, with a particular focus on memory tasks. In a set of visual memory experiments, we show that, within the same experimental design, the softmax parameter varies across -alternatives, whereas the parameter of the signal-detection model is stable. Together, our findings indicate that replacing softmax with signal-detection link models would yield more generalizable predictions across changes in task structure. More ambitiously, the invariance of signal detection model parameters across different tasks suggests that the parametric assumptions of these models may be more than just a mathematical convenience, but reflect something real about human decision-making.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory