某些正则球面构型势的绝对极小值

IF 0.9 3区 数学 Q2 MATHEMATICS
Sergiy Borodachov
{"title":"某些正则球面构型势的绝对极小值","authors":"Sergiy Borodachov","doi":"10.1016/j.jat.2023.105930","DOIUrl":null,"url":null,"abstract":"<div><p><span>We use methods of approximation theory to find the absolute minima on the sphere of the potential of spherical </span><span><math><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>-designs with a non-trivial index <span><math><mrow><mn>2</mn><mi>m</mi></mrow></math></span> that are contained in a union of <span><math><mi>m</mi></math></span><span> parallel hyperplanes, </span><span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, whose locations satisfy certain additional assumptions. The interaction between points is described by a function of the dot product, which has positive derivatives of orders <span><math><mrow><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><mn>2</mn><mi>m</mi></mrow></math></span><span>. This includes the case of the classical Coulomb, Riesz, and logarithmic potentials as well as a completely monotone potential of the distance squared. We illustrate this result by showing that the absolute minimum of the potential of the set of vertices of the icosahedron on the unit sphere </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span> is attained at the vertices of the dual dodecahedron and the one for the set of vertices of the dodecahedron is attained at the vertices of the dual icosahedron. The absolute minimum of the potential of the configuration of 240 minimal vectors of </span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span><span> root lattice normalized to lie on the unit sphere </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> is attained at a set of 2160 points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span> which we describe.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute minima of potentials of certain regular spherical configurations\",\"authors\":\"Sergiy Borodachov\",\"doi\":\"10.1016/j.jat.2023.105930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We use methods of approximation theory to find the absolute minima on the sphere of the potential of spherical </span><span><math><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>-designs with a non-trivial index <span><math><mrow><mn>2</mn><mi>m</mi></mrow></math></span> that are contained in a union of <span><math><mi>m</mi></math></span><span> parallel hyperplanes, </span><span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, whose locations satisfy certain additional assumptions. The interaction between points is described by a function of the dot product, which has positive derivatives of orders <span><math><mrow><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><mn>2</mn><mi>m</mi></mrow></math></span><span>. This includes the case of the classical Coulomb, Riesz, and logarithmic potentials as well as a completely monotone potential of the distance squared. We illustrate this result by showing that the absolute minimum of the potential of the set of vertices of the icosahedron on the unit sphere </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span> is attained at the vertices of the dual dodecahedron and the one for the set of vertices of the dodecahedron is attained at the vertices of the dual icosahedron. The absolute minimum of the potential of the configuration of 240 minimal vectors of </span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span><span> root lattice normalized to lie on the unit sphere </span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> is attained at a set of 2160 points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span> which we describe.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000680\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000680","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用近似理论的方法来寻找包含在m个平行超平面(m≥2)的并集中的具有非平凡索引2m的球面(2m-3)-设计的势的球面上的绝对极小值,这些超平面的位置满足某些附加假设。点之间的相互作用由点积的函数描述,该函数具有2m−2、2m−1和2m阶的正导数。这包括经典库仑势、里斯势和对数势的情况,以及距离平方的完全单调势。我们通过证明R3中单位球面S2上的二十面体的顶点集的势的绝对最小值在对偶十二面体的各顶点处获得,并且十二面体顶点集的势能的绝对极小值在对偶二十面体顶点处获得来说明这一结果。在我们描述的S7上的2160个点的集合处,获得了R8中归一化为位于单位球面S7上的E8根晶格的240个最小矢量的配置的电势的绝对最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute minima of potentials of certain regular spherical configurations

We use methods of approximation theory to find the absolute minima on the sphere of the potential of spherical (2m3)-designs with a non-trivial index 2m that are contained in a union of m parallel hyperplanes, m2, whose locations satisfy certain additional assumptions. The interaction between points is described by a function of the dot product, which has positive derivatives of orders 2m2, 2m1, and 2m. This includes the case of the classical Coulomb, Riesz, and logarithmic potentials as well as a completely monotone potential of the distance squared. We illustrate this result by showing that the absolute minimum of the potential of the set of vertices of the icosahedron on the unit sphere S2 in R3 is attained at the vertices of the dual dodecahedron and the one for the set of vertices of the dodecahedron is attained at the vertices of the dual icosahedron. The absolute minimum of the potential of the configuration of 240 minimal vectors of E8 root lattice normalized to lie on the unit sphere S7 in R8 is attained at a set of 2160 points on S7 which we describe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信