S. Delbecq, J. Fontane, N. Gourdain, T. Planès, F. Simatos
{"title":"《巴黎协定》背景下的可持续航空:对未来情景及其技术缓解手段的审查","authors":"S. Delbecq, J. Fontane, N. Gourdain, T. Planès, F. Simatos","doi":"10.1016/j.paerosci.2023.100920","DOIUrl":null,"url":null,"abstract":"<div><p>The sustainability of air transport is increasingly studied in relation to climate issues. The objective of this paper is to provide the key elements for assessing whether a given transition scenario for aviation could be considered as sustainable in the context of the Paris Agreement. Addressing this question relies on a broad range of concepts which are reviewed. First, ethical considerations related to effort-sharing mitigation principles and physical considerations on climate impacts of aviation are introduced. Then, the technological levers of action for mitigating CO<sub>2</sub> and non-CO<sub>2</sub> effects are detailed. Concerning CO<sub>2</sub> emissions, low-carbon alternative energy carriers represent the main lever, with a wide range of solutions with varying degrees of maturity and decarbonization potentials. Other significant CO<sub>2</sub> levers include improving aircraft architecture efficiency and accelerating fleet renewal. Concerning non-CO<sub>2</sub> effects, contrail effect mitigation through operational strategies is one of the most promising lever. Aviation transition scenarios are then reviewed, with a particular focus on scenario simulation and sustainability assessment methodologies. Prospective scenarios are a useful framework for assessing the impacts of technological levers on the achievement of climate objectives. This review leads to the conclusion that technological levers have an important role to play in making aviation sustainable; however, significant uncertainties weigh on their feasibility, particularly for the most ambitious scenarios which rely on strong technological and political trade-off assumptions. The paper ends by raising the question about the meaning of sustainable aviation, which must be based on technological but also, for instance, social, economic and ethical considerations.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"141 ","pages":"Article 100920"},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers\",\"authors\":\"S. Delbecq, J. Fontane, N. Gourdain, T. Planès, F. Simatos\",\"doi\":\"10.1016/j.paerosci.2023.100920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sustainability of air transport is increasingly studied in relation to climate issues. The objective of this paper is to provide the key elements for assessing whether a given transition scenario for aviation could be considered as sustainable in the context of the Paris Agreement. Addressing this question relies on a broad range of concepts which are reviewed. First, ethical considerations related to effort-sharing mitigation principles and physical considerations on climate impacts of aviation are introduced. Then, the technological levers of action for mitigating CO<sub>2</sub> and non-CO<sub>2</sub> effects are detailed. Concerning CO<sub>2</sub> emissions, low-carbon alternative energy carriers represent the main lever, with a wide range of solutions with varying degrees of maturity and decarbonization potentials. Other significant CO<sub>2</sub> levers include improving aircraft architecture efficiency and accelerating fleet renewal. Concerning non-CO<sub>2</sub> effects, contrail effect mitigation through operational strategies is one of the most promising lever. Aviation transition scenarios are then reviewed, with a particular focus on scenario simulation and sustainability assessment methodologies. Prospective scenarios are a useful framework for assessing the impacts of technological levers on the achievement of climate objectives. This review leads to the conclusion that technological levers have an important role to play in making aviation sustainable; however, significant uncertainties weigh on their feasibility, particularly for the most ambitious scenarios which rely on strong technological and political trade-off assumptions. The paper ends by raising the question about the meaning of sustainable aviation, which must be based on technological but also, for instance, social, economic and ethical considerations.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"141 \",\"pages\":\"Article 100920\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042123000362\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042123000362","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers
The sustainability of air transport is increasingly studied in relation to climate issues. The objective of this paper is to provide the key elements for assessing whether a given transition scenario for aviation could be considered as sustainable in the context of the Paris Agreement. Addressing this question relies on a broad range of concepts which are reviewed. First, ethical considerations related to effort-sharing mitigation principles and physical considerations on climate impacts of aviation are introduced. Then, the technological levers of action for mitigating CO2 and non-CO2 effects are detailed. Concerning CO2 emissions, low-carbon alternative energy carriers represent the main lever, with a wide range of solutions with varying degrees of maturity and decarbonization potentials. Other significant CO2 levers include improving aircraft architecture efficiency and accelerating fleet renewal. Concerning non-CO2 effects, contrail effect mitigation through operational strategies is one of the most promising lever. Aviation transition scenarios are then reviewed, with a particular focus on scenario simulation and sustainability assessment methodologies. Prospective scenarios are a useful framework for assessing the impacts of technological levers on the achievement of climate objectives. This review leads to the conclusion that technological levers have an important role to play in making aviation sustainable; however, significant uncertainties weigh on their feasibility, particularly for the most ambitious scenarios which rely on strong technological and political trade-off assumptions. The paper ends by raising the question about the meaning of sustainable aviation, which must be based on technological but also, for instance, social, economic and ethical considerations.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.