基底类似于某些Jordan块的非扩张矩阵数系统

IF 0.9 2区 数学 Q2 MATHEMATICS
Joshua W. Caldwell , Kevin G. Hare , Tomáš Vávra
{"title":"基底类似于某些Jordan块的非扩张矩阵数系统","authors":"Joshua W. Caldwell ,&nbsp;Kevin G. Hare ,&nbsp;Tomáš Vávra","doi":"10.1016/j.jcta.2023.105828","DOIUrl":null,"url":null,"abstract":"<div><p>We study representations of integral vectors in a number system with a matrix base <em>M</em> and vector digits. We focus on the case when <em>M</em> is equal or similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the Jordan block with eigenvalue 1 and dimension <em>n</em>. If <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we classify all digit sets of size two allowing representation for all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we show that a digit set of size three suffice to represent all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. For bases <em>M</em> similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we construct a digit set of size <em>n</em> such that all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is represented. The language of words representing the zero vector with <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the digits <span><math><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>±</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105828"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-expansive matrix number systems with bases similar to certain Jordan blocks\",\"authors\":\"Joshua W. Caldwell ,&nbsp;Kevin G. Hare ,&nbsp;Tomáš Vávra\",\"doi\":\"10.1016/j.jcta.2023.105828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study representations of integral vectors in a number system with a matrix base <em>M</em> and vector digits. We focus on the case when <em>M</em> is equal or similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the Jordan block with eigenvalue 1 and dimension <em>n</em>. If <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we classify all digit sets of size two allowing representation for all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we show that a digit set of size three suffice to represent all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. For bases <em>M</em> similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we construct a digit set of size <em>n</em> such that all of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is represented. The language of words representing the zero vector with <span><math><mi>M</mi><mo>=</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the digits <span><math><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>±</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"202 \",\"pages\":\"Article 105828\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523000961\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000961","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了矩阵基M和向量数字的数字系统中积分向量的表示。我们关注当M等于或类似于Jn的情况,Jn是具有特征值1和维数n的Jordan块。如果M=J2,我们对大小为2的所有数字集进行分类,允许表示所有Z2。对于n≥3的M=Jn,我们证明了大小为3的数字集足以表示所有Zn。对于类似于Jn的碱基M,n≥2,我们构造了一个大小为n的数字集,使得所有的Zn都被表示。表示M=J2的零向量和数字(0,±1)T的单词语言被证明不是上下文无关的,而是可以被具有对数记忆的图灵机识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-expansive matrix number systems with bases similar to certain Jordan blocks

We study representations of integral vectors in a number system with a matrix base M and vector digits. We focus on the case when M is equal or similar to Jn, the Jordan block with eigenvalue 1 and dimension n. If M=J2, we classify all digit sets of size two allowing representation for all of Z2. For M=Jn with n3, we show that a digit set of size three suffice to represent all of Zn. For bases M similar to Jn, n2, we construct a digit set of size n such that all of Zn is represented. The language of words representing the zero vector with M=J2 and the digits (0,±1)T is shown not to be context-free, but to be recognizable by a Turing machine with logarithmic memory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信