{"title":"关于Zagier的一些二重Nahm和","authors":"Zhineng Cao , Hjalmar Rosengren , Liuquan Wang","doi":"10.1016/j.jcta.2023.105819","DOIUrl":null,"url":null,"abstract":"<div><p>Zagier provided eleven conjectural rank two examples for Nahm's problem. All of them have been proved in the literature except for the fifth example, and there is no <em>q</em>-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a <em>q</em>-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first <em>q</em><span>-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105819"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On some double Nahm sums of Zagier\",\"authors\":\"Zhineng Cao , Hjalmar Rosengren , Liuquan Wang\",\"doi\":\"10.1016/j.jcta.2023.105819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zagier provided eleven conjectural rank two examples for Nahm's problem. All of them have been proved in the literature except for the fifth example, and there is no <em>q</em>-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a <em>q</em>-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first <em>q</em><span>-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras.</span></p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"202 \",\"pages\":\"Article 105819\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523000870\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Zagier provided eleven conjectural rank two examples for Nahm's problem. All of them have been proved in the literature except for the fifth example, and there is no q-series proof for the tenth example. We prove that the fifth and the tenth examples are in fact equivalent. Then we give a q-series proof for the fifth example, which confirms a recent conjecture of Wang. This also serves as the first q-series proof for the tenth example, whose explicit form was conjectured by Vlasenko and Zwegers in 2011 and whose modularity was proved by Cherednik and Feigin in 2013 via nilpotent double affine Hecke algebras.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.