bent函数基于置换构造的进一步研究

IF 0.9 2区 数学 Q2 MATHEMATICS
Kangquan Li , Chunlei Li , Tor Helleseth , Longjiang Qu
{"title":"bent函数基于置换构造的进一步研究","authors":"Kangquan Li ,&nbsp;Chunlei Li ,&nbsp;Tor Helleseth ,&nbsp;Longjiang Qu","doi":"10.1016/j.jcta.2023.105779","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Constructing bent functions by composing a Boolean function with a </span>permutation was introduced by Hou and Langevin in 1997. The approach appears simple but heavily depends on the construction of desirable permutations. In this paper, we further study this approach by investigating the exponential sums of certain </span>monomials and permutations. We propose several classes of bent functions from quadratic permutations and permutations with (generalized) Niho exponents, and also a class of bent functions from a generalization of the Maiorana-McFarland class. The relations among the proposed bent functions and the known families of bent function are studied. Numerical results show that our constructions include bent functions that are not contained in the completed Maiorana-McFarland class </span><span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>#</mi></mrow></msup></math></span>, the class <span><math><msub><mrow><mi>PS</mi></mrow><mrow><mi>a</mi><mi>p</mi></mrow></msub></math></span> or the class <span><math><mi>H</mi></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105779"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further investigations on permutation based constructions of bent functions\",\"authors\":\"Kangquan Li ,&nbsp;Chunlei Li ,&nbsp;Tor Helleseth ,&nbsp;Longjiang Qu\",\"doi\":\"10.1016/j.jcta.2023.105779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Constructing bent functions by composing a Boolean function with a </span>permutation was introduced by Hou and Langevin in 1997. The approach appears simple but heavily depends on the construction of desirable permutations. In this paper, we further study this approach by investigating the exponential sums of certain </span>monomials and permutations. We propose several classes of bent functions from quadratic permutations and permutations with (generalized) Niho exponents, and also a class of bent functions from a generalization of the Maiorana-McFarland class. The relations among the proposed bent functions and the known families of bent function are studied. Numerical results show that our constructions include bent functions that are not contained in the completed Maiorana-McFarland class </span><span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>#</mi></mrow></msup></math></span>, the class <span><math><msub><mrow><mi>PS</mi></mrow><mrow><mi>a</mi><mi>p</mi></mrow></msub></math></span> or the class <span><math><mi>H</mi></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"199 \",\"pages\":\"Article 105779\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652300047X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652300047X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1997年,Hou和Langevin提出了用置换组合布尔函数来构造bent函数。该方法看起来很简单,但在很大程度上取决于所需排列的构造。在本文中,我们通过研究某些单项式和置换的指数和来进一步研究这种方法。我们从二次置换和具有(广义)Niho指数的置换中提出了几类bent函数,并从Maiorana-McFarland类的推广中提出了一类bent功能。研究了所提出的bent函数与已知bent函数族之间的关系。数值结果表明,我们的构造包括不包含在已完成的Maiorana-McFarland类M#、类PSap或类H中的bent函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further investigations on permutation based constructions of bent functions

Constructing bent functions by composing a Boolean function with a permutation was introduced by Hou and Langevin in 1997. The approach appears simple but heavily depends on the construction of desirable permutations. In this paper, we further study this approach by investigating the exponential sums of certain monomials and permutations. We propose several classes of bent functions from quadratic permutations and permutations with (generalized) Niho exponents, and also a class of bent functions from a generalization of the Maiorana-McFarland class. The relations among the proposed bent functions and the known families of bent function are studied. Numerical results show that our constructions include bent functions that are not contained in the completed Maiorana-McFarland class M#, the class PSap or the class H.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信