拉姆齐非善涉书

IF 0.9 2区 数学 Q2 MATHEMATICS
Chunchao Fan, Qizhong Lin
{"title":"拉姆齐非善涉书","authors":"Chunchao Fan,&nbsp;Qizhong Lin","doi":"10.1016/j.jcta.2023.105780","DOIUrl":null,"url":null,"abstract":"<div><p>In 1983, Burr and Erdős initiated the study of Ramsey goodness problems. Nikiforov and Rousseau (2009) resolved almost all goodness questions raised by Burr and Erdős, in which the bounds on the parameters are of tower type since their proofs rely on the regularity lemma. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> be the book graph on <em>n</em> vertices which consists of <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> all sharing a common <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and let <span><math><mi>H</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> be the complete <em>p</em>-partite graph with parts of sizes <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</p><p>Recently, avoiding use of the regularity lemma, Fox, He and Wigderson (2023) revisit several Ramsey goodness results involving books. They comment that it would be very interesting to see how far one can push these ideas. In particular, they conjecture that for all integers <span><math><mi>k</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, there exists some <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that for all <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>≤</mo><mi>t</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><mi>δ</mi><mi>n</mi></math></span>, we have <span><math><mi>r</mi><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo></math></span> is the maximum <em>d</em> for which there is an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-vertex <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>-free graph in which at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span> vertices have degree less than <em>d</em>. They verify the conjecture when <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>.</p><p>We disprove the conjecture of Fox et al. (2023). Building upon the work of Fox et al., we make a substantial step by showing that for every <span><math><mi>k</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that the following holds for all large <em>n</em>. Let <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>≤</mo><mi>t</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><mi>δ</mi><mi>n</mi></math></span> be positive integers. If <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The inequality is tight if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo></math></span>. Moreover, we prove that for every <span><math><mi>k</mi><mo>,</mo><mi>a</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that for all large <em>n</em> and <span><math><mi>b</mi><mo>≤</mo><mi>δ</mi><mi>ln</mi><mo>⁡</mo><mi>n</mi></math></span>, <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> if <span><math><mi>a</mi><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo></math></span>, where the case when <span><math><mi>a</mi><mo>=</mo><mn>1</mn></math></span> has been proved by Nikiforov and Rousseau (2009) using the regularity lemma. The bounds on <span><math><mn>1</mn><mo>/</mo><mi>δ</mi></math></span> we obtain are not of tower-type since our proofs do not rely on the regularity lemma.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105780"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey non-goodness involving books\",\"authors\":\"Chunchao Fan,&nbsp;Qizhong Lin\",\"doi\":\"10.1016/j.jcta.2023.105780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1983, Burr and Erdős initiated the study of Ramsey goodness problems. Nikiforov and Rousseau (2009) resolved almost all goodness questions raised by Burr and Erdős, in which the bounds on the parameters are of tower type since their proofs rely on the regularity lemma. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> be the book graph on <em>n</em> vertices which consists of <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> all sharing a common <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and let <span><math><mi>H</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> be the complete <em>p</em>-partite graph with parts of sizes <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</p><p>Recently, avoiding use of the regularity lemma, Fox, He and Wigderson (2023) revisit several Ramsey goodness results involving books. They comment that it would be very interesting to see how far one can push these ideas. In particular, they conjecture that for all integers <span><math><mi>k</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, there exists some <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that for all <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>≤</mo><mi>t</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><mi>δ</mi><mi>n</mi></math></span>, we have <span><math><mi>r</mi><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo></math></span> is the maximum <em>d</em> for which there is an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-vertex <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>-free graph in which at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span> vertices have degree less than <em>d</em>. They verify the conjecture when <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>.</p><p>We disprove the conjecture of Fox et al. (2023). Building upon the work of Fox et al., we make a substantial step by showing that for every <span><math><mi>k</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that the following holds for all large <em>n</em>. Let <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>≤</mo><mi>t</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><mi>δ</mi><mi>n</mi></math></span> be positive integers. If <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The inequality is tight if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo></math></span>. Moreover, we prove that for every <span><math><mi>k</mi><mo>,</mo><mi>a</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that for all large <em>n</em> and <span><math><mi>b</mi><mo>≤</mo><mi>δ</mi><mi>ln</mi><mo>⁡</mo><mi>n</mi></math></span>, <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> if <span><math><mi>a</mi><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>k</mi><mo>)</mo></math></span>, where the case when <span><math><mi>a</mi><mo>=</mo><mn>1</mn></math></span> has been proved by Nikiforov and Rousseau (2009) using the regularity lemma. The bounds on <span><math><mn>1</mn><mo>/</mo><mi>δ</mi></math></span> we obtain are not of tower-type since our proofs do not rely on the regularity lemma.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"199 \",\"pages\":\"Article 105780\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523000481\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000481","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1983年,伯尔和埃尔德斯开始研究拉姆齐良善问题。Nikiforov和Rousseau(2009)几乎解决了Burr和Erdõs提出的所有优度问题,其中参数的边界是塔式的,因为他们的证明依赖于正则引理。设Bk,n是由Kk+1的n−k个副本组成的n个顶点上的图书图,所有副本共享一个公共Kk,并且设H=Kp(a1,…,ap)是具有大小为a1,……,ap的部分的完整p-部分图。最近,为了避免使用正则性引理,Fox、He和Wigderson(2023)重新审视了涉及书籍的几个Ramsey优度结果。他们评论说,看看人们能把这些想法推进到什么程度会很有趣。特别地,他们推测对于所有整数k,p,t≥2,存在一些δ>;0,使得对于所有n≥1,1≤a1≤…≤ap−1≤t和ap≤δn,我们有r(H,Bk,n)=(p−1)(n−1)+dk(n,Ka1,a2)+1,其中dk(n,Ka1、a2)是存在(n+d−1)-顶点Ka1的最大d,其中最多k−1个顶点的阶数小于d的a2自由图。当a1=a2=1时,他们验证了该猜想。我们推翻了Fox等人的猜想。(2023)。在Fox等人工作的基础上,我们迈出了实质性的一步,证明了每k,p,t≥2,就存在δ>;0,使得以下对所有大n成立。设1≤a1≤…≤ap−1≤t和ap≤δn为正整数。如果a1=1,则r(H,Bk,n)≤(p−1)(n−1)+k(p−2)+1。如果a2|(n−1−k),则不等式是紧的。此外,我们证明了对于每个k,a≥1和p≥2,存在δ>;0,使得对于所有大的n和b≤δln⁡n、 r(Kp(1,a,b,…,b),Bk,n)=(p−1)(n−1)+k。由于我们的证明不依赖于正则引理,所以我们获得的1/δ的边界不是塔式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey non-goodness involving books

In 1983, Burr and Erdős initiated the study of Ramsey goodness problems. Nikiforov and Rousseau (2009) resolved almost all goodness questions raised by Burr and Erdős, in which the bounds on the parameters are of tower type since their proofs rely on the regularity lemma. Let Bk,n be the book graph on n vertices which consists of nk copies of Kk+1 all sharing a common Kk, and let H=Kp(a1,,ap) be the complete p-partite graph with parts of sizes a1,,ap.

Recently, avoiding use of the regularity lemma, Fox, He and Wigderson (2023) revisit several Ramsey goodness results involving books. They comment that it would be very interesting to see how far one can push these ideas. In particular, they conjecture that for all integers k,p,t2, there exists some δ>0 such that for all n1, 1a1ap1t and apδn, we have r(H,Bk,n)=(p1)(n1)+dk(n,Ka1,a2)+1, where dk(n,Ka1,a2) is the maximum d for which there is an (n+d1)-vertex Ka1,a2-free graph in which at most k1 vertices have degree less than d. They verify the conjecture when a1=a2=1.

We disprove the conjecture of Fox et al. (2023). Building upon the work of Fox et al., we make a substantial step by showing that for every k,p,t2, there exists δ>0 such that the following holds for all large n. Let 1a1ap1t and apδn be positive integers. If a1=1, then r(H,Bk,n)(p1)(n1)+k(p1)(a21)+1. The inequality is tight if a2|(n1k). Moreover, we prove that for every k,a1 and p2, there exists δ>0 such that for all large n and bδlnn, r(Kp(1,a,b,,b),Bk,n)=(p1)(n1)+k(p1)(a1)+1 if a|(n1k), where the case when a=1 has been proved by Nikiforov and Rousseau (2009) using the regularity lemma. The bounds on 1/δ we obtain are not of tower-type since our proofs do not rely on the regularity lemma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信