如何提出20个问题并获胜:从支付价格意愿的小样本中评估偏好的机器学习工具

IF 2.8 3区 经济学 Q1 ECONOMICS
Konstantina Sokratous, Anderson K. Fitch, Peter D. Kvam
{"title":"如何提出20个问题并获胜:从支付价格意愿的小样本中评估偏好的机器学习工具","authors":"Konstantina Sokratous,&nbsp;Anderson K. Fitch,&nbsp;Peter D. Kvam","doi":"10.1016/j.jocm.2023.100418","DOIUrl":null,"url":null,"abstract":"<div><p>Subjective value has long been measured using binary choice experiments, yet responses like willingness-to-pay prices can be an effective and efficient way to assess individual differences risk preferences and value. Tony Marley’s work illustrated that dynamic, stochastic models permit meaningful inferences about cognition from process-level data on paradigms beyond binary choice, yet many of these models remain difficult to use because their likelihoods must be approximated from simulation. In this paper, we develop and test an approach that uses deep neural networks<span> to estimate the parameters of otherwise-intractable behavioral models. Once trained, these networks allow for accurate and instantaneous parameter estimation. We compare different network architectures and show that they accurately recover true risk preferences related to utility, response caution, anchoring, and non-decision processes. To illustrate the usefulness of the approach, it was then applied to estimate model parameters for a large, demographically representative sample of U.S. participants who completed a 20-question pricing task — an estimation task that is not feasible with previous methods. The results illustrate the utility of machine-learning approaches for fitting cognitive and economic models, providing efficient methods for quantifying meaningful differences in risk preferences from sparse data.</span></p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"48 ","pages":"Article 100418"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to ask twenty questions and win: Machine learning tools for assessing preferences from small samples of willingness-to-pay prices\",\"authors\":\"Konstantina Sokratous,&nbsp;Anderson K. Fitch,&nbsp;Peter D. Kvam\",\"doi\":\"10.1016/j.jocm.2023.100418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subjective value has long been measured using binary choice experiments, yet responses like willingness-to-pay prices can be an effective and efficient way to assess individual differences risk preferences and value. Tony Marley’s work illustrated that dynamic, stochastic models permit meaningful inferences about cognition from process-level data on paradigms beyond binary choice, yet many of these models remain difficult to use because their likelihoods must be approximated from simulation. In this paper, we develop and test an approach that uses deep neural networks<span> to estimate the parameters of otherwise-intractable behavioral models. Once trained, these networks allow for accurate and instantaneous parameter estimation. We compare different network architectures and show that they accurately recover true risk preferences related to utility, response caution, anchoring, and non-decision processes. To illustrate the usefulness of the approach, it was then applied to estimate model parameters for a large, demographically representative sample of U.S. participants who completed a 20-question pricing task — an estimation task that is not feasible with previous methods. The results illustrate the utility of machine-learning approaches for fitting cognitive and economic models, providing efficient methods for quantifying meaningful differences in risk preferences from sparse data.</span></p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"48 \",\"pages\":\"Article 100418\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534523000192\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534523000192","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

长期以来,主观价值一直使用二元选择实验来衡量,但支付价格的意愿等反应可能是评估个体差异风险偏好和价值的有效方法。Tony Marley的工作表明,动态随机模型允许从二元选择之外的范式的过程级数据中对认知进行有意义的推断,但其中许多模型仍然难以使用,因为它们的可能性必须通过模拟来近似。在本文中,我们开发并测试了一种使用深度神经网络来估计其他棘手行为模型参数的方法。一旦经过训练,这些网络就可以进行准确和即时的参数估计。我们比较了不同的网络架构,并表明它们准确地恢复了与效用、响应谨慎、锚定和非决策过程相关的真实风险偏好。为了说明该方法的有用性,然后将其应用于对完成20个问题定价任务的美国参与者的大量人口统计学代表性样本的模型参数估计,这一估计任务在以前的方法中是不可行的。结果说明了机器学习方法在拟合认知和经济模型方面的效用,为从稀疏数据中量化风险偏好的有意义差异提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to ask twenty questions and win: Machine learning tools for assessing preferences from small samples of willingness-to-pay prices

Subjective value has long been measured using binary choice experiments, yet responses like willingness-to-pay prices can be an effective and efficient way to assess individual differences risk preferences and value. Tony Marley’s work illustrated that dynamic, stochastic models permit meaningful inferences about cognition from process-level data on paradigms beyond binary choice, yet many of these models remain difficult to use because their likelihoods must be approximated from simulation. In this paper, we develop and test an approach that uses deep neural networks to estimate the parameters of otherwise-intractable behavioral models. Once trained, these networks allow for accurate and instantaneous parameter estimation. We compare different network architectures and show that they accurately recover true risk preferences related to utility, response caution, anchoring, and non-decision processes. To illustrate the usefulness of the approach, it was then applied to estimate model parameters for a large, demographically representative sample of U.S. participants who completed a 20-question pricing task — an estimation task that is not feasible with previous methods. The results illustrate the utility of machine-learning approaches for fitting cognitive and economic models, providing efficient methods for quantifying meaningful differences in risk preferences from sparse data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信