{"title":"三元层状硫族化合物ZnIn2S4与MWCNT耦合增强光电化学水分解","authors":"Mohit Khosya, Mohd Faraz, Neeraj Khare","doi":"10.1016/j.nwnano.2023.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Layered hexagonal zinc indium sulfide coupled with multiwalled carbon nanotubes (MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub>) nanocomposites were prepared via using the hydrothermal method and investigated its photoelectrochemical (PEC) water-splitting properties. A series of MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub> nanocomposites with different concentrations of MWCNT have been synthesized. The effects of the addition of different concentrations of MWCNT on the PEC performance of H-ZnIn<sub>2</sub>S<sub>4</sub> material are studied. The outcomes showed that the maximum value of photocurrent density is obtained for 20 wt% MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub>, which is ∼3.8 times higher as compared to the H-ZnIn<sub>2</sub>S<sub>4</sub> photoanode under visible light illumination. The enhancement in the current density is because of the electron-accepting behavior of MWCNT that helps in the effective separation and transfer of charges at the interface. The ability of MWCNT to accept and transport electrons offers a better path to regulate the movement of photogenerated charge carriers, extending the lifetime of the photogenerated charges produced in the semiconductors. A plausible mechanism for observed enhanced PEC activity of MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub> nanocomposites is provided, which is supported by impedance spectroscopy and Mott-Schottky results.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"4 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photoelectrochemical water splitting in ternary layered chalcogenide ZnIn2S4 coupled with MWCNT\",\"authors\":\"Mohit Khosya, Mohd Faraz, Neeraj Khare\",\"doi\":\"10.1016/j.nwnano.2023.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layered hexagonal zinc indium sulfide coupled with multiwalled carbon nanotubes (MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub>) nanocomposites were prepared via using the hydrothermal method and investigated its photoelectrochemical (PEC) water-splitting properties. A series of MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub> nanocomposites with different concentrations of MWCNT have been synthesized. The effects of the addition of different concentrations of MWCNT on the PEC performance of H-ZnIn<sub>2</sub>S<sub>4</sub> material are studied. The outcomes showed that the maximum value of photocurrent density is obtained for 20 wt% MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub>, which is ∼3.8 times higher as compared to the H-ZnIn<sub>2</sub>S<sub>4</sub> photoanode under visible light illumination. The enhancement in the current density is because of the electron-accepting behavior of MWCNT that helps in the effective separation and transfer of charges at the interface. The ability of MWCNT to accept and transport electrons offers a better path to regulate the movement of photogenerated charge carriers, extending the lifetime of the photogenerated charges produced in the semiconductors. A plausible mechanism for observed enhanced PEC activity of MWCNT/H-ZnIn<sub>2</sub>S<sub>4</sub> nanocomposites is provided, which is supported by impedance spectroscopy and Mott-Schottky results.</p></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"4 \",\"pages\":\"Article 100018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978123000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced photoelectrochemical water splitting in ternary layered chalcogenide ZnIn2S4 coupled with MWCNT
Layered hexagonal zinc indium sulfide coupled with multiwalled carbon nanotubes (MWCNT/H-ZnIn2S4) nanocomposites were prepared via using the hydrothermal method and investigated its photoelectrochemical (PEC) water-splitting properties. A series of MWCNT/H-ZnIn2S4 nanocomposites with different concentrations of MWCNT have been synthesized. The effects of the addition of different concentrations of MWCNT on the PEC performance of H-ZnIn2S4 material are studied. The outcomes showed that the maximum value of photocurrent density is obtained for 20 wt% MWCNT/H-ZnIn2S4, which is ∼3.8 times higher as compared to the H-ZnIn2S4 photoanode under visible light illumination. The enhancement in the current density is because of the electron-accepting behavior of MWCNT that helps in the effective separation and transfer of charges at the interface. The ability of MWCNT to accept and transport electrons offers a better path to regulate the movement of photogenerated charge carriers, extending the lifetime of the photogenerated charges produced in the semiconductors. A plausible mechanism for observed enhanced PEC activity of MWCNT/H-ZnIn2S4 nanocomposites is provided, which is supported by impedance spectroscopy and Mott-Schottky results.