情绪指数在预测风险价值和预期缺口中的信息含量:一种完全实现的指数GARCH-X方法

Antonio Naimoli
{"title":"情绪指数在预测风险价值和预期缺口中的信息含量:一种完全实现的指数GARCH-X方法","authors":"Antonio Naimoli","doi":"10.1016/j.inteco.2023.100459","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to investigate the impact of public sentiment on tail risk forecasting. In this framework, we extend the Realized Exponential GARCH model to directly incorporate information from realized volatility measures and exogenous variables, thus resulting in a novel dynamically complete specification denoted as the Complete REGARCH-X model. Several sentiment indices related to social media and journal articles regarding the economy and stock market volatility are considered as potential drivers of volatility dynamics. An application to the prediction of daily Value-at-Risk and Expected Shortfall for the Standard &amp; Poor’s 500 index provides evidence that combining the information content of realized volatility and sentiment measures can lead to significant accuracy gains in forecasting tail risk.</p></div>","PeriodicalId":13794,"journal":{"name":"International Economics","volume":"176 ","pages":"Article 100459"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach\",\"authors\":\"Antonio Naimoli\",\"doi\":\"10.1016/j.inteco.2023.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to investigate the impact of public sentiment on tail risk forecasting. In this framework, we extend the Realized Exponential GARCH model to directly incorporate information from realized volatility measures and exogenous variables, thus resulting in a novel dynamically complete specification denoted as the Complete REGARCH-X model. Several sentiment indices related to social media and journal articles regarding the economy and stock market volatility are considered as potential drivers of volatility dynamics. An application to the prediction of daily Value-at-Risk and Expected Shortfall for the Standard &amp; Poor’s 500 index provides evidence that combining the information content of realized volatility and sentiment measures can lead to significant accuracy gains in forecasting tail risk.</p></div>\",\"PeriodicalId\":13794,\"journal\":{\"name\":\"International Economics\",\"volume\":\"176 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2110701723000719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Economics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2110701723000719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是调查公众情绪对尾部风险预测的影响。在这个框架中,我们扩展了已实现指数GARCH模型,以直接结合来自已实现波动性度量和外生变量的信息,从而产生了一个新的动态完整规范,称为完整REGARCH-X模型。一些与社交媒体和期刊文章有关的情绪指数被认为是波动动态的潜在驱动因素。在风险日价值和预期缺口预测中的应用&;普尔500指数提供的证据表明,将已实现波动性的信息内容和情绪指标相结合,可以在预测尾部风险方面带来显著的准确性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach

The aim of this paper is to investigate the impact of public sentiment on tail risk forecasting. In this framework, we extend the Realized Exponential GARCH model to directly incorporate information from realized volatility measures and exogenous variables, thus resulting in a novel dynamically complete specification denoted as the Complete REGARCH-X model. Several sentiment indices related to social media and journal articles regarding the economy and stock market volatility are considered as potential drivers of volatility dynamics. An application to the prediction of daily Value-at-Risk and Expected Shortfall for the Standard & Poor’s 500 index provides evidence that combining the information content of realized volatility and sentiment measures can lead to significant accuracy gains in forecasting tail risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Economics
International Economics Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
6.30
自引率
0.00%
发文量
74
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信