立方体模型:预测并说明三种选择方案的最佳-最差选择情况

IF 2.8 3区 经济学 Q1 ECONOMICS
Adele Diederich , Keivan Mallahi-Karai
{"title":"立方体模型:预测并说明三种选择方案的最佳-最差选择情况","authors":"Adele Diederich ,&nbsp;Keivan Mallahi-Karai","doi":"10.1016/j.jocm.2023.100448","DOIUrl":null,"url":null,"abstract":"<div><p>The Cube model (Mallahi-Karai and Diederich, 2019) is a dynamic-stochastic approach for decision making situations including multiple alternatives. The underlying model is a multivariate Wiener process with drift, and its dimension is related to the number of alternatives in the choice set. Here we modify the model to account for Best–Worst settings. The choices are made in a number of episodes allowing the alternatives to be ranked from best to worst or from worst to best. The model makes predictions with respect to choice probabilities and (mean) choice response times. We show how the model can be implemented using Markov chains and test the model and a simpler variation of it on data from Hawkins et al. (2014b).</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"49 ","pages":"Article 100448"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cube model: Predictions and account for best–worst choice situations with three choice alternatives\",\"authors\":\"Adele Diederich ,&nbsp;Keivan Mallahi-Karai\",\"doi\":\"10.1016/j.jocm.2023.100448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cube model (Mallahi-Karai and Diederich, 2019) is a dynamic-stochastic approach for decision making situations including multiple alternatives. The underlying model is a multivariate Wiener process with drift, and its dimension is related to the number of alternatives in the choice set. Here we modify the model to account for Best–Worst settings. The choices are made in a number of episodes allowing the alternatives to be ranked from best to worst or from worst to best. The model makes predictions with respect to choice probabilities and (mean) choice response times. We show how the model can be implemented using Markov chains and test the model and a simpler variation of it on data from Hawkins et al. (2014b).</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"49 \",\"pages\":\"Article 100448\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534523000490\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534523000490","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

立方体模型(Mallahi Karai和Diederich,2019)是一种用于包括多个备选方案的决策情况的动态随机方法。基础模型是一个具有漂移的多元维纳过程,其维数与选择集中的备选方案数量有关。在这里,我们修改模型以考虑最佳-最差设置。这些选择是在多集中进行的,允许从最佳到最差或从最差到最佳对备选方案进行排名。该模型对选择概率和(平均)选择响应时间进行预测。我们展示了如何使用马尔可夫链来实现该模型,并在Hawkins等人的数据上测试了该模型及其更简单的变体。(2014b)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cube model: Predictions and account for best–worst choice situations with three choice alternatives

The Cube model (Mallahi-Karai and Diederich, 2019) is a dynamic-stochastic approach for decision making situations including multiple alternatives. The underlying model is a multivariate Wiener process with drift, and its dimension is related to the number of alternatives in the choice set. Here we modify the model to account for Best–Worst settings. The choices are made in a number of episodes allowing the alternatives to be ranked from best to worst or from worst to best. The model makes predictions with respect to choice probabilities and (mean) choice response times. We show how the model can be implemented using Markov chains and test the model and a simpler variation of it on data from Hawkins et al. (2014b).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信