{"title":"微生物组功能的稳健性","authors":"Kiseok Keith Lee , Yeonwoo Park , Seppe Kuehn","doi":"10.1016/j.coisb.2023.100479","DOIUrl":null,"url":null,"abstract":"<div><p><span>Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the </span>microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robustness of microbiome function\",\"authors\":\"Kiseok Keith Lee , Yeonwoo Park , Seppe Kuehn\",\"doi\":\"10.1016/j.coisb.2023.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the </span>microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution