{"title":"基于壳聚糖、铁纳米粒子和羧化多壁碳纳米管纳米杂化物的增强型L-乳酸生物传感器","authors":"Kusum Dagar, Vinay Narwal, C.S. Pundir","doi":"10.1016/j.sintl.2023.100245","DOIUrl":null,"url":null,"abstract":"<div><p>An enhanced biosensor was developed for the determination of blood lactate in lacto-acidosis patients. The biosensor employed a nanohybrid composed of chitosan/iron oxide nanoparticles and carboxylated multiwalled carbon nanotubes (CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs), electrodeposited onto an Au electrode, followed by covalent immobilization of L-lactate oxidase (LOx) onto this nano-hybrid. The biosensor (LOx/CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs/AuE) exhibited notable improvements in its analytical characteristics such as a rapid response time (4s), a lower detection limit of 0.15 μM and a wider linear range of 1–3000 μM of L-lactic acid. Additionally, it displayed enhanced reproducibility and an extended shelf life of 100 days. The biosensor was employed to measure the concentration of L-lactate in the plasma of both apparently healthy individuals and lacto-acidosis patients. The results showed that the L-lactate concentrations ranged from 112 ± 1.24 to 183 ± 29.15 μmol/L in apparently healthy individuals, whereas it ranged from 2236 ± 33.29 to 4949 ± 72.39 μmol/L in lacto-acidosis patients, which is significantly higher than in apparently healthy individuals. Thus, the integration of the CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs hybrid film in the biosensor led to the enhanced analytical performance of the biosensor.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"4 ","pages":"Article 100245"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes\",\"authors\":\"Kusum Dagar, Vinay Narwal, C.S. Pundir\",\"doi\":\"10.1016/j.sintl.2023.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An enhanced biosensor was developed for the determination of blood lactate in lacto-acidosis patients. The biosensor employed a nanohybrid composed of chitosan/iron oxide nanoparticles and carboxylated multiwalled carbon nanotubes (CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs), electrodeposited onto an Au electrode, followed by covalent immobilization of L-lactate oxidase (LOx) onto this nano-hybrid. The biosensor (LOx/CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs/AuE) exhibited notable improvements in its analytical characteristics such as a rapid response time (4s), a lower detection limit of 0.15 μM and a wider linear range of 1–3000 μM of L-lactic acid. Additionally, it displayed enhanced reproducibility and an extended shelf life of 100 days. The biosensor was employed to measure the concentration of L-lactate in the plasma of both apparently healthy individuals and lacto-acidosis patients. The results showed that the L-lactate concentrations ranged from 112 ± 1.24 to 183 ± 29.15 μmol/L in apparently healthy individuals, whereas it ranged from 2236 ± 33.29 to 4949 ± 72.39 μmol/L in lacto-acidosis patients, which is significantly higher than in apparently healthy individuals. Thus, the integration of the CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs hybrid film in the biosensor led to the enhanced analytical performance of the biosensor.</p></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"4 \",\"pages\":\"Article 100245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351123000190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351123000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes
An enhanced biosensor was developed for the determination of blood lactate in lacto-acidosis patients. The biosensor employed a nanohybrid composed of chitosan/iron oxide nanoparticles and carboxylated multiwalled carbon nanotubes (CHIT/Fe3O4NPs/c-MWCNTs), electrodeposited onto an Au electrode, followed by covalent immobilization of L-lactate oxidase (LOx) onto this nano-hybrid. The biosensor (LOx/CHIT/Fe3O4NPs/c-MWCNTs/AuE) exhibited notable improvements in its analytical characteristics such as a rapid response time (4s), a lower detection limit of 0.15 μM and a wider linear range of 1–3000 μM of L-lactic acid. Additionally, it displayed enhanced reproducibility and an extended shelf life of 100 days. The biosensor was employed to measure the concentration of L-lactate in the plasma of both apparently healthy individuals and lacto-acidosis patients. The results showed that the L-lactate concentrations ranged from 112 ± 1.24 to 183 ± 29.15 μmol/L in apparently healthy individuals, whereas it ranged from 2236 ± 33.29 to 4949 ± 72.39 μmol/L in lacto-acidosis patients, which is significantly higher than in apparently healthy individuals. Thus, the integration of the CHIT/Fe3O4NPs/c-MWCNTs hybrid film in the biosensor led to the enhanced analytical performance of the biosensor.