新型咔唑基超交联聚合物与二氧化锡的高灵敏氨传感器

Hamid Ramezanipour Penchah , Ahad Ghaemi , Peiman Valipour , Mohamadmahdi Shahbazi
{"title":"新型咔唑基超交联聚合物与二氧化锡的高灵敏氨传感器","authors":"Hamid Ramezanipour Penchah ,&nbsp;Ahad Ghaemi ,&nbsp;Peiman Valipour ,&nbsp;Mohamadmahdi Shahbazi","doi":"10.1016/j.sintl.2023.100249","DOIUrl":null,"url":null,"abstract":"<div><p>Tin Dioxide (SnO<sub>2</sub>), carbazole based hypercrosslinked polymer (C-HCP), and C-HCP/SnO<sub>2</sub> nanocomposites by different C-HCP weight percent concentration (0.05–0.15 %wt.) were synthesized by precipitation method and used as sensing materials for ammonia sensor. These materials were applied for ammonia detection in various temperature (100–350 °C) and ammonia concentration (100, 200, and 300 ppm). The electrical conductivity of materials was measured at different temperature and decreasing of electrical conductivity observed by temperature increasing. The resistance of sensor in air to that in presence of ammonia was considered as sensor response. According to the results, SnO<sub>2</sub> had much greater conductivity than different concentration of C-HCP/SnO<sub>2</sub> composite under same conditions. The results showed that in maximum sensor response with adding the C-HCP in SnO<sub>2</sub>, the optimum temperature decrease. The optimum temperature for SnO<sub>2</sub> and 0.05, 0.1, and 0.15 %wt. of C-HCP in SnO<sub>2</sub> composites was obtained 300 °C, 250 °C, 200 °C, and 150 °C, respectively. According to the results, the maximum sensor response observed 0.10 %wt. for ammonia detection at 200 °C. The 0.10 %wt. C-HCP in SnO<sub>2</sub> based sensor showed a response three times higher than that by pure SnO<sub>2</sub> in ammonia detection. Finally, the repeatability of sensors to the ammonia was obtained suitable in 3 continuous cycle and the response and reduction times of sensors was measured.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive ammonia sensor using newly synthesized carbazole based hypercrosslinked polymer and tin dioxide\",\"authors\":\"Hamid Ramezanipour Penchah ,&nbsp;Ahad Ghaemi ,&nbsp;Peiman Valipour ,&nbsp;Mohamadmahdi Shahbazi\",\"doi\":\"10.1016/j.sintl.2023.100249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tin Dioxide (SnO<sub>2</sub>), carbazole based hypercrosslinked polymer (C-HCP), and C-HCP/SnO<sub>2</sub> nanocomposites by different C-HCP weight percent concentration (0.05–0.15 %wt.) were synthesized by precipitation method and used as sensing materials for ammonia sensor. These materials were applied for ammonia detection in various temperature (100–350 °C) and ammonia concentration (100, 200, and 300 ppm). The electrical conductivity of materials was measured at different temperature and decreasing of electrical conductivity observed by temperature increasing. The resistance of sensor in air to that in presence of ammonia was considered as sensor response. According to the results, SnO<sub>2</sub> had much greater conductivity than different concentration of C-HCP/SnO<sub>2</sub> composite under same conditions. The results showed that in maximum sensor response with adding the C-HCP in SnO<sub>2</sub>, the optimum temperature decrease. The optimum temperature for SnO<sub>2</sub> and 0.05, 0.1, and 0.15 %wt. of C-HCP in SnO<sub>2</sub> composites was obtained 300 °C, 250 °C, 200 °C, and 150 °C, respectively. According to the results, the maximum sensor response observed 0.10 %wt. for ammonia detection at 200 °C. The 0.10 %wt. C-HCP in SnO<sub>2</sub> based sensor showed a response three times higher than that by pure SnO<sub>2</sub> in ammonia detection. Finally, the repeatability of sensors to the ammonia was obtained suitable in 3 continuous cycle and the response and reduction times of sensors was measured.</p></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351123000232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351123000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用沉淀法合成了二氧化锡(SnO2)、咔唑基超交联聚合物(C-HCP)和不同C-HCP重量百分比浓度(0.05-0.15%wt)的C-HCP/SnO2纳米复合材料,并将其用作氨传感器的传感材料。这些材料用于不同温度(100–350°C)和氨浓度(100、200和300 ppm)下的氨检测。测量了材料在不同温度下的电导率,并观察到随着温度的升高,电导率下降。传感器在空气中的电阻与氨存在时的电阻被认为是传感器响应。结果表明,在相同条件下,SnO2的电导率远高于不同浓度的C-HCP/SnO2复合材料。结果表明,在最大传感器响应下,在SnO2中加入C-HCP,最适温度降低。SnO2和0.05、0.1和0.15%wt.%。C-HCP在SnO2复合材料中的含量分别为300°C、250°C、200°C和150°C。根据结果,观察到的最大传感器响应为0.10%wt。用于200°C下的氨检测。0.10%重量。基于SnO2的传感器中的C-HCP在氨检测中显示出比纯SnO2高三倍的响应。最后,在3个连续循环中获得了合适的传感器对氨的重复性,并测量了传感器的响应和还原时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive ammonia sensor using newly synthesized carbazole based hypercrosslinked polymer and tin dioxide

Tin Dioxide (SnO2), carbazole based hypercrosslinked polymer (C-HCP), and C-HCP/SnO2 nanocomposites by different C-HCP weight percent concentration (0.05–0.15 %wt.) were synthesized by precipitation method and used as sensing materials for ammonia sensor. These materials were applied for ammonia detection in various temperature (100–350 °C) and ammonia concentration (100, 200, and 300 ppm). The electrical conductivity of materials was measured at different temperature and decreasing of electrical conductivity observed by temperature increasing. The resistance of sensor in air to that in presence of ammonia was considered as sensor response. According to the results, SnO2 had much greater conductivity than different concentration of C-HCP/SnO2 composite under same conditions. The results showed that in maximum sensor response with adding the C-HCP in SnO2, the optimum temperature decrease. The optimum temperature for SnO2 and 0.05, 0.1, and 0.15 %wt. of C-HCP in SnO2 composites was obtained 300 °C, 250 °C, 200 °C, and 150 °C, respectively. According to the results, the maximum sensor response observed 0.10 %wt. for ammonia detection at 200 °C. The 0.10 %wt. C-HCP in SnO2 based sensor showed a response three times higher than that by pure SnO2 in ammonia detection. Finally, the repeatability of sensors to the ammonia was obtained suitable in 3 continuous cycle and the response and reduction times of sensors was measured.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信