三种常用的缺失数据处理方法的比较:全案例分析、逆概率加权和多重插值

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
Roderick J. Little, James R. Carpenter, Katherine J. Lee
{"title":"三种常用的缺失数据处理方法的比较:全案例分析、逆概率加权和多重插值","authors":"Roderick J. Little, James R. Carpenter, Katherine J. Lee","doi":"10.1177/00491241221113873","DOIUrl":null,"url":null,"abstract":"Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an anal...","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"80 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Comparison of Three Popular Methods for Handling Missing Data: Complete-Case Analysis, Inverse Probability Weighting, and Multiple Imputation\",\"authors\":\"Roderick J. Little, James R. Carpenter, Katherine J. Lee\",\"doi\":\"10.1177/00491241221113873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an anal...\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"80 5\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00491241221113873\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241221113873","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 10

摘要

数据缺失是数据分析中普遍存在的问题。解决这个问题的三种常用方法是:(a)完全案例分析,即只有在变量上完整的单元……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Three Popular Methods for Handling Missing Data: Complete-Case Analysis, Inverse Probability Weighting, and Multiple Imputation
Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an anal...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信