潜在类别分析中的标签转换:分类的准确性、参数估计和置信区间

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Meng Qiu, Ke-Hai Yuan
{"title":"潜在类别分析中的标签转换:分类的准确性、参数估计和置信区间","authors":"Meng Qiu, Ke-Hai Yuan","doi":"10.1080/10705511.2023.2213842","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage rates of confidence intervals (CIs) through Monte Carlo simulation studies. We address the issue of label switching with a distance-based relabeling approach and introduce an index to measure separation among latent classes. Our results show that classification accuracy, parameter estimation accuracy, and CI coverage rates are primarily influenced by class separation and the number of indicators used for LCA. We recommend using a large sample size to mitigate the effects of tiny class sizes. Additionally, the study finds that the parametric bootstrap CIs perform comparably well or better when compared with the CIs based on the standard maximum likelihood method.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"91 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label Switching in Latent Class Analysis: Accuracy of Classification, Parameter Estimates, and Confidence Intervals\",\"authors\":\"Meng Qiu, Ke-Hai Yuan\",\"doi\":\"10.1080/10705511.2023.2213842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p>Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage rates of confidence intervals (CIs) through Monte Carlo simulation studies. We address the issue of label switching with a distance-based relabeling approach and introduce an index to measure separation among latent classes. Our results show that classification accuracy, parameter estimation accuracy, and CI coverage rates are primarily influenced by class separation and the number of indicators used for LCA. We recommend using a large sample size to mitigate the effects of tiny class sizes. Additionally, the study finds that the parametric bootstrap CIs perform comparably well or better when compared with the CIs based on the standard maximum likelihood method.</p>\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2023.2213842\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2213842","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要潜在类分析(LCA)是一种广泛应用于检测横断面数据中未观察到的群体异质性的技术。尽管它很受欢迎,但LCA的性能并没有得到很好的理解。在本研究中,我们通过蒙特卡罗模拟研究,通过检查分类精度,参数估计精度和置信区间(ci)的覆盖率来评估二元数据LCA的性能。我们用基于距离的重新标记方法解决了标签切换的问题,并引入了一个指标来衡量潜在类别之间的分离。研究结果表明,分类精度、参数估计精度和CI覆盖率主要受类别分离和LCA使用的指标数量的影响。我们建议使用大样本量来减轻小班规模的影响。此外,研究发现,与基于标准极大似然方法的ci相比,参数自举ci的表现相当好,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Label Switching in Latent Class Analysis: Accuracy of Classification, Parameter Estimates, and Confidence Intervals

Label Switching in Latent Class Analysis: Accuracy of Classification, Parameter Estimates, and Confidence Intervals

Abstract

Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage rates of confidence intervals (CIs) through Monte Carlo simulation studies. We address the issue of label switching with a distance-based relabeling approach and introduce an index to measure separation among latent classes. Our results show that classification accuracy, parameter estimation accuracy, and CI coverage rates are primarily influenced by class separation and the number of indicators used for LCA. We recommend using a large sample size to mitigate the effects of tiny class sizes. Additionally, the study finds that the parametric bootstrap CIs perform comparably well or better when compared with the CIs based on the standard maximum likelihood method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信