Tobia Politi, Mindaugas Zilius, Marco Bartoli, Ulisse Cardini, Ugo Marzocchi, Stefano Bonaglia
{"title":"无脊椎全生生物对沿海沉积物甲烷释放的直接贡献","authors":"Tobia Politi, Mindaugas Zilius, Marco Bartoli, Ulisse Cardini, Ugo Marzocchi, Stefano Bonaglia","doi":"10.1002/lol2.10361","DOIUrl":null,"url":null,"abstract":"<p>Sediment macrofauna play a vital role in sustaining aquatic food webs and biogeochemical cycles. Previous research demonstrated that bioturbation indirectly affects methane (CH<sub>4</sub>) dynamics through mobilization of porewater and alteration of microbial processes in the surrounding sediment. However, little is known on the direct contribution of macrofauna holobionts (the assemblage of invertebrate host and associated microbiome) to biogeochemical fluxes. Here, we investigated how 19 taxa of macrofauna holobionts, from different estuarine habitats spanning 40° to 63° latitude, directly contribute to CH<sub>4</sub> fluxes. Deep burrowing infauna and deposit feeders were responsible for the highest CH<sub>4</sub> production, whereas epifauna and filter feeders promoted oxidative CH<sub>4</sub> consumption. Among the different environmental parameters, salinity was inversely correlated with CH<sub>4</sub> production by macrofauna holobionts, with the process suppressed at high salinity (≥ 33). This study provides empirical evidence on how functional traits and environmental factors influence sediment invertebrates' contribution to CH<sub>4</sub> fluxes.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"8 6","pages":"876-884"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10361","citationCount":"0","resultStr":"{\"title\":\"Direct contribution of invertebrate holobionts to methane release from coastal sediments\",\"authors\":\"Tobia Politi, Mindaugas Zilius, Marco Bartoli, Ulisse Cardini, Ugo Marzocchi, Stefano Bonaglia\",\"doi\":\"10.1002/lol2.10361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sediment macrofauna play a vital role in sustaining aquatic food webs and biogeochemical cycles. Previous research demonstrated that bioturbation indirectly affects methane (CH<sub>4</sub>) dynamics through mobilization of porewater and alteration of microbial processes in the surrounding sediment. However, little is known on the direct contribution of macrofauna holobionts (the assemblage of invertebrate host and associated microbiome) to biogeochemical fluxes. Here, we investigated how 19 taxa of macrofauna holobionts, from different estuarine habitats spanning 40° to 63° latitude, directly contribute to CH<sub>4</sub> fluxes. Deep burrowing infauna and deposit feeders were responsible for the highest CH<sub>4</sub> production, whereas epifauna and filter feeders promoted oxidative CH<sub>4</sub> consumption. Among the different environmental parameters, salinity was inversely correlated with CH<sub>4</sub> production by macrofauna holobionts, with the process suppressed at high salinity (≥ 33). This study provides empirical evidence on how functional traits and environmental factors influence sediment invertebrates' contribution to CH<sub>4</sub> fluxes.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"8 6\",\"pages\":\"876-884\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10361\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10361\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10361","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Direct contribution of invertebrate holobionts to methane release from coastal sediments
Sediment macrofauna play a vital role in sustaining aquatic food webs and biogeochemical cycles. Previous research demonstrated that bioturbation indirectly affects methane (CH4) dynamics through mobilization of porewater and alteration of microbial processes in the surrounding sediment. However, little is known on the direct contribution of macrofauna holobionts (the assemblage of invertebrate host and associated microbiome) to biogeochemical fluxes. Here, we investigated how 19 taxa of macrofauna holobionts, from different estuarine habitats spanning 40° to 63° latitude, directly contribute to CH4 fluxes. Deep burrowing infauna and deposit feeders were responsible for the highest CH4 production, whereas epifauna and filter feeders promoted oxidative CH4 consumption. Among the different environmental parameters, salinity was inversely correlated with CH4 production by macrofauna holobionts, with the process suppressed at high salinity (≥ 33). This study provides empirical evidence on how functional traits and environmental factors influence sediment invertebrates' contribution to CH4 fluxes.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.