脑卒中后大脑宏观结构的神经可塑性与运动恢复相关。

Neurorehabilitation and neural repair Pub Date : 2023-12-01 Epub Date: 2023-10-26 DOI:10.1177/15459683231207356
Takashi Hanakawa, Fujiko Hotta, Tatsuhiro Nakamura, Keiichiro Shindo, Naoko Ushiba, Masaki Hirosawa, Yutaka Yamazaki, Yoshinao Moriyama, Syota Takagi, Katsuhiro Mizuno, Meigen Liu
{"title":"脑卒中后大脑宏观结构的神经可塑性与运动恢复相关。","authors":"Takashi Hanakawa, Fujiko Hotta, Tatsuhiro Nakamura, Keiichiro Shindo, Naoko Ushiba, Masaki Hirosawa, Yutaka Yamazaki, Yoshinao Moriyama, Syota Takagi, Katsuhiro Mizuno, Meigen Liu","doi":"10.1177/15459683231207356","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Motor recovery varies across post-stroke individuals, some of whom require a better rehabilitation strategy. We hypothesized that macrostructural neuroplasticity of the motor control network including the cerebellum might underlie individual differences in motor recovery. <i>Objectives.</i> To gain insight into the macrostructural neuroplasticity after stroke, we examined 52 post-stroke individuals using both the Fugl-Meyer assessment and structural magnetic resonance imaging.</p><p><strong>Methods: </strong>We performed voxel-based lesion symptom mapping and cross-sectional voxel-based morphometry to correlate the motor scores with the lesion location and the gray matter volume (GMV), respectively. Longitudinal data were available at ~8 and/or 15 weeks after admission from 43 individuals with supratentorial lesions. We performed a longitudinal VBM analysis followed by a multiple regression analysis to correlate between the changes of the motor assessment scores and those of GMV overtime.</p><p><strong>Results: </strong>We found a cross-sectional correlation of residual motor functioning with GMV in the ipsilesional cerebellum and contralesional parietal cortex. Longitudinally, we found increases in GMV in the ipsilesional supplementary motor area, and the ipsilesional superior and inferior cerebellar zones, along with a GMV decrease in the ipsilesional thalamus. The motor recovery was correlated with the GMV changes in the superior and inferior cerebellar zones. The regaining of upper-limb motor functioning was correlated with the GMV changes of both superior and inferior cerebellum while that of lower-limb motor functioning with the GMV increase of the inferior cerebellum only.</p><p><strong>Conclusions: </strong>The present findings support the hypothesis that macrostructural cerebellar neuroplasticity is correlated with individual differences in motor recovery after stroke.</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":" ","pages":"775-785"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrostructural Cerebellar Neuroplasticity Correlates With Motor Recovery After Stroke.\",\"authors\":\"Takashi Hanakawa, Fujiko Hotta, Tatsuhiro Nakamura, Keiichiro Shindo, Naoko Ushiba, Masaki Hirosawa, Yutaka Yamazaki, Yoshinao Moriyama, Syota Takagi, Katsuhiro Mizuno, Meigen Liu\",\"doi\":\"10.1177/15459683231207356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Motor recovery varies across post-stroke individuals, some of whom require a better rehabilitation strategy. We hypothesized that macrostructural neuroplasticity of the motor control network including the cerebellum might underlie individual differences in motor recovery. <i>Objectives.</i> To gain insight into the macrostructural neuroplasticity after stroke, we examined 52 post-stroke individuals using both the Fugl-Meyer assessment and structural magnetic resonance imaging.</p><p><strong>Methods: </strong>We performed voxel-based lesion symptom mapping and cross-sectional voxel-based morphometry to correlate the motor scores with the lesion location and the gray matter volume (GMV), respectively. Longitudinal data were available at ~8 and/or 15 weeks after admission from 43 individuals with supratentorial lesions. We performed a longitudinal VBM analysis followed by a multiple regression analysis to correlate between the changes of the motor assessment scores and those of GMV overtime.</p><p><strong>Results: </strong>We found a cross-sectional correlation of residual motor functioning with GMV in the ipsilesional cerebellum and contralesional parietal cortex. Longitudinally, we found increases in GMV in the ipsilesional supplementary motor area, and the ipsilesional superior and inferior cerebellar zones, along with a GMV decrease in the ipsilesional thalamus. The motor recovery was correlated with the GMV changes in the superior and inferior cerebellar zones. The regaining of upper-limb motor functioning was correlated with the GMV changes of both superior and inferior cerebellum while that of lower-limb motor functioning with the GMV increase of the inferior cerebellum only.</p><p><strong>Conclusions: </strong>The present findings support the hypothesis that macrostructural cerebellar neuroplasticity is correlated with individual differences in motor recovery after stroke.</p>\",\"PeriodicalId\":94158,\"journal\":{\"name\":\"Neurorehabilitation and neural repair\",\"volume\":\" \",\"pages\":\"775-785\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurorehabilitation and neural repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15459683231207356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683231207356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑卒中后的运动恢复各不相同,其中一些人需要更好的康复策略。我们假设,包括小脑在内的运动控制网络的宏观结构神经可塑性可能是运动恢复个体差异的基础。目标。为了深入了解卒中后的宏观结构神经可塑性,我们使用Fugl-Meyer评估和结构磁共振成像对52名卒中后个体进行了检查。方法:我们进行了基于体素的病变症状映射和基于横截面体素的形态测量,以分别将运动评分与病变位置和灰质体积(GMV)相关联。纵向数据可在~8和/或15 43例幕上病变患者入院后数周。我们进行了纵向VBM分析,然后进行了多元回归分析,以将运动评估分数的变化与GMV超时的变化相关联。结果:我们发现同侧小脑和对侧顶叶皮层的残余运动功能与GMV存在横断面相关性。从纵向上看,我们发现同侧补充运动区、同侧小脑上下区的GMV增加,同侧丘脑的GMV降低。运动恢复与小脑上下区的GMV变化相关。上肢运动功能的恢复与上小脑和下小脑的GMV变化相关,而下肢运动功能的重建仅与下小脑GMV的增加相关。结论:目前的研究结果支持了一种假说,即巨大结构的小脑神经可塑性与中风后运动恢复的个体差异相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macrostructural Cerebellar Neuroplasticity Correlates With Motor Recovery After Stroke.

Background: Motor recovery varies across post-stroke individuals, some of whom require a better rehabilitation strategy. We hypothesized that macrostructural neuroplasticity of the motor control network including the cerebellum might underlie individual differences in motor recovery. Objectives. To gain insight into the macrostructural neuroplasticity after stroke, we examined 52 post-stroke individuals using both the Fugl-Meyer assessment and structural magnetic resonance imaging.

Methods: We performed voxel-based lesion symptom mapping and cross-sectional voxel-based morphometry to correlate the motor scores with the lesion location and the gray matter volume (GMV), respectively. Longitudinal data were available at ~8 and/or 15 weeks after admission from 43 individuals with supratentorial lesions. We performed a longitudinal VBM analysis followed by a multiple regression analysis to correlate between the changes of the motor assessment scores and those of GMV overtime.

Results: We found a cross-sectional correlation of residual motor functioning with GMV in the ipsilesional cerebellum and contralesional parietal cortex. Longitudinally, we found increases in GMV in the ipsilesional supplementary motor area, and the ipsilesional superior and inferior cerebellar zones, along with a GMV decrease in the ipsilesional thalamus. The motor recovery was correlated with the GMV changes in the superior and inferior cerebellar zones. The regaining of upper-limb motor functioning was correlated with the GMV changes of both superior and inferior cerebellum while that of lower-limb motor functioning with the GMV increase of the inferior cerebellum only.

Conclusions: The present findings support the hypothesis that macrostructural cerebellar neuroplasticity is correlated with individual differences in motor recovery after stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信