Ivo Z. Gonçalves, Fernando C. Mendonça, Arthur C. Sanches, Fábio R. Marin
{"title":"优化巴西南部热带牧草种植系统的蒸散和作物灌溉需求。","authors":"Ivo Z. Gonçalves, Fernando C. Mendonça, Arthur C. Sanches, Fábio R. Marin","doi":"10.1007/s00484-023-02570-9","DOIUrl":null,"url":null,"abstract":"<div><p>Crop irrigation requirements are usually estimated based on crop evapotranspiration (ET<sub>c</sub>) as determined by the reference evapotranspiration (ETo) and crop coefficient (K<sub>c</sub>). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d<sup>−1</sup>. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.</p></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"68 1","pages":"57 - 67"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing evapotranspiration and crop irrigation requirements of tropical forages cropping systems in Southern Brazil\",\"authors\":\"Ivo Z. Gonçalves, Fernando C. Mendonça, Arthur C. Sanches, Fábio R. Marin\",\"doi\":\"10.1007/s00484-023-02570-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crop irrigation requirements are usually estimated based on crop evapotranspiration (ET<sub>c</sub>) as determined by the reference evapotranspiration (ETo) and crop coefficient (K<sub>c</sub>). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d<sup>−1</sup>. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.</p></div>\",\"PeriodicalId\":588,\"journal\":{\"name\":\"International Journal of Biometeorology\",\"volume\":\"68 1\",\"pages\":\"57 - 67\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00484-023-02570-9\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02570-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Optimizing evapotranspiration and crop irrigation requirements of tropical forages cropping systems in Southern Brazil
Crop irrigation requirements are usually estimated based on crop evapotranspiration (ETc) as determined by the reference evapotranspiration (ETo) and crop coefficient (Kc). There is a lack of knowledge on the irrigation requirements of tropical forage crops in Brazil, contrasting with the increasing use of irrigation in pastures. The effort of this study was to investigate what would be the water needs of tropical forages in Southern Brazil, based on a robust experimental database. The study was carried out in São Paulo State-Brazil using different forages species and their combinations [Guinea grass (GG); Guinea grass + black oat + ryegrass (GOR); Bermuda grass (BG), and Bermuda + black oat + ryegrass (BOR)]. The experimental fields were fully irrigated, and the Kc values were derived from ETc measurements on lysimeters; ETo was estimated using daily data from a nearby weather station and the standard FAO56 parameterization. Mean daily ETc values for GG, GOR, BG and BOR were 4.1, 2.9, 3.6, and 3.4 mm, respectively, and respective mean Kc values were 0.99, 0.90, 1.0, and 0.94. Average Kc values for all plots decreased as ETo increased, producing a negative Kc-ETo relationship, mainly when ETo reached values greater than 5 mm d−1. This was most likely due to internal plant stomatal resistance to vapor release from the leaves diffusing to the atmosphere at high ETo. So, the time-based Kc curves described by FAO 56 manual should be adjusted for the analyzed crops considering different ranges of ETo to improve the required irrigation depth.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.