{"title":"非圆链环自行车运动中的电机传递与主动干扰。","authors":"Thomas Haab, Peter Leinen, Stefan Panzer","doi":"10.1123/mc.2023-0011","DOIUrl":null,"url":null,"abstract":"<p><p>Athletes must transfer their performance when changing equipment due to innovative developments in sports technology. This kind of transfer has received only moderate attention. The aim of this study was to examine whether a mechanical change in sports equipment disturbs an athlete's performance and affects biomechanical and neurophysiological parameters. Therefore, an experiment was conducted in which 36 participants in three groups pedaled at 70 rounds per minute on a cycling ergometer with a circular and a noncircular (NC) chainring. The dependent variables were the total variability of the cadence, torque effectiveness, and muscle cocontraction (electromyographic cocontraction) of four antagonistic acting muscle pairs. Data were recorded during an acquisition phase, a transfer phase, and a retention phase. The results revealed that practice on a circular chainring induces a positive transfer on the NC chainring for total variability without a proactive interference effect. Torque effectiveness did not change within or between groups during the acquisition, transfer, and retention phases. Torque effectiveness and electromyographic cocontraction were not affected when the chainrings were altered from Day 1 to Day 2. During the retention phase, electromyographic cocontraction was higher when using the NC chainring, but the difference was small in absolute terms. The results regarding transfer and proactive interference seem to be strongly dependent on the movement task and the change in sports equipment. Transfer from the circular to NC chainring indicates refined neuromuscular control and improved movement coordination.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":" ","pages":"29-49"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor Transfer and Proactive Interference in Cycling With a Noncircular Chainring.\",\"authors\":\"Thomas Haab, Peter Leinen, Stefan Panzer\",\"doi\":\"10.1123/mc.2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Athletes must transfer their performance when changing equipment due to innovative developments in sports technology. This kind of transfer has received only moderate attention. The aim of this study was to examine whether a mechanical change in sports equipment disturbs an athlete's performance and affects biomechanical and neurophysiological parameters. Therefore, an experiment was conducted in which 36 participants in three groups pedaled at 70 rounds per minute on a cycling ergometer with a circular and a noncircular (NC) chainring. The dependent variables were the total variability of the cadence, torque effectiveness, and muscle cocontraction (electromyographic cocontraction) of four antagonistic acting muscle pairs. Data were recorded during an acquisition phase, a transfer phase, and a retention phase. The results revealed that practice on a circular chainring induces a positive transfer on the NC chainring for total variability without a proactive interference effect. Torque effectiveness did not change within or between groups during the acquisition, transfer, and retention phases. Torque effectiveness and electromyographic cocontraction were not affected when the chainrings were altered from Day 1 to Day 2. During the retention phase, electromyographic cocontraction was higher when using the NC chainring, but the difference was small in absolute terms. The results regarding transfer and proactive interference seem to be strongly dependent on the movement task and the change in sports equipment. Transfer from the circular to NC chainring indicates refined neuromuscular control and improved movement coordination.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":\" \",\"pages\":\"29-49\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2023-0011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2023-0011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Motor Transfer and Proactive Interference in Cycling With a Noncircular Chainring.
Athletes must transfer their performance when changing equipment due to innovative developments in sports technology. This kind of transfer has received only moderate attention. The aim of this study was to examine whether a mechanical change in sports equipment disturbs an athlete's performance and affects biomechanical and neurophysiological parameters. Therefore, an experiment was conducted in which 36 participants in three groups pedaled at 70 rounds per minute on a cycling ergometer with a circular and a noncircular (NC) chainring. The dependent variables were the total variability of the cadence, torque effectiveness, and muscle cocontraction (electromyographic cocontraction) of four antagonistic acting muscle pairs. Data were recorded during an acquisition phase, a transfer phase, and a retention phase. The results revealed that practice on a circular chainring induces a positive transfer on the NC chainring for total variability without a proactive interference effect. Torque effectiveness did not change within or between groups during the acquisition, transfer, and retention phases. Torque effectiveness and electromyographic cocontraction were not affected when the chainrings were altered from Day 1 to Day 2. During the retention phase, electromyographic cocontraction was higher when using the NC chainring, but the difference was small in absolute terms. The results regarding transfer and proactive interference seem to be strongly dependent on the movement task and the change in sports equipment. Transfer from the circular to NC chainring indicates refined neuromuscular control and improved movement coordination.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.