{"title":"显微镜染色用聚甲基染料的分类和命名。给生物医学研究者的简短指南。","authors":"Heinz Mustroph, Richard W Horobin","doi":"10.1080/10520295.2023.2263837","DOIUrl":null,"url":null,"abstract":"<p><p>The scientific literature contains many accounts of application of polymethine dyes, including cyanine dyes, as imaging agents, i.e., \"biological stains,\" for microscopic investigation of biological materials. Currently, many such dyes are used as probes for living cells, i.e., \"fluorescent probes.\" Polymethine dyes are defined here by two criteria. First, they possess a conjugated chain of (2n + 1) sp<sup>2</sup>-hybridized carbon atoms that connect a terminal π-electron-accepting (π-electron withdrawing) group with a terminal π-electron-donating group. Second, they have an odd number (2n + 3) of π-centers and an even number (2n + 4) of π-electrons in this chain, where n equals the number of -CR<sup>2</sup>=CR<sup>3</sup>- groups, usually vinylene groups -CH=CH-. Commercialization of diverse chemical types of many polymethine dyes has been attempted. The dyes that have achieved wide application, however, are limited in number and it is these dyes that are emphasized here. Because these polymethine dyes sometimes have been described by confusing, and sometimes confused, names, we clarify here the chemical categories and names of such dyes for the nonchemist, biomedical end user of such imaging agents. Nevertheless, the nomenclature presented here is not intended to replace the traditional \"chromophore\" categories of dyestuff chemistry, because the latter are held in place both by wide usage and by venerable authorities, such as the <i>Colour Index</i>.</p>","PeriodicalId":8970,"journal":{"name":"Biotechnic & Histochemistry","volume":" ","pages":"545-553"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and naming of polymethine dyes used as staining agents for microscopy. A short guide for biomedical investigators.\",\"authors\":\"Heinz Mustroph, Richard W Horobin\",\"doi\":\"10.1080/10520295.2023.2263837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The scientific literature contains many accounts of application of polymethine dyes, including cyanine dyes, as imaging agents, i.e., \\\"biological stains,\\\" for microscopic investigation of biological materials. Currently, many such dyes are used as probes for living cells, i.e., \\\"fluorescent probes.\\\" Polymethine dyes are defined here by two criteria. First, they possess a conjugated chain of (2n + 1) sp<sup>2</sup>-hybridized carbon atoms that connect a terminal π-electron-accepting (π-electron withdrawing) group with a terminal π-electron-donating group. Second, they have an odd number (2n + 3) of π-centers and an even number (2n + 4) of π-electrons in this chain, where n equals the number of -CR<sup>2</sup>=CR<sup>3</sup>- groups, usually vinylene groups -CH=CH-. Commercialization of diverse chemical types of many polymethine dyes has been attempted. The dyes that have achieved wide application, however, are limited in number and it is these dyes that are emphasized here. Because these polymethine dyes sometimes have been described by confusing, and sometimes confused, names, we clarify here the chemical categories and names of such dyes for the nonchemist, biomedical end user of such imaging agents. Nevertheless, the nomenclature presented here is not intended to replace the traditional \\\"chromophore\\\" categories of dyestuff chemistry, because the latter are held in place both by wide usage and by venerable authorities, such as the <i>Colour Index</i>.</p>\",\"PeriodicalId\":8970,\"journal\":{\"name\":\"Biotechnic & Histochemistry\",\"volume\":\" \",\"pages\":\"545-553\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnic & Histochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10520295.2023.2263837\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnic & Histochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10520295.2023.2263837","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Classification and naming of polymethine dyes used as staining agents for microscopy. A short guide for biomedical investigators.
The scientific literature contains many accounts of application of polymethine dyes, including cyanine dyes, as imaging agents, i.e., "biological stains," for microscopic investigation of biological materials. Currently, many such dyes are used as probes for living cells, i.e., "fluorescent probes." Polymethine dyes are defined here by two criteria. First, they possess a conjugated chain of (2n + 1) sp2-hybridized carbon atoms that connect a terminal π-electron-accepting (π-electron withdrawing) group with a terminal π-electron-donating group. Second, they have an odd number (2n + 3) of π-centers and an even number (2n + 4) of π-electrons in this chain, where n equals the number of -CR2=CR3- groups, usually vinylene groups -CH=CH-. Commercialization of diverse chemical types of many polymethine dyes has been attempted. The dyes that have achieved wide application, however, are limited in number and it is these dyes that are emphasized here. Because these polymethine dyes sometimes have been described by confusing, and sometimes confused, names, we clarify here the chemical categories and names of such dyes for the nonchemist, biomedical end user of such imaging agents. Nevertheless, the nomenclature presented here is not intended to replace the traditional "chromophore" categories of dyestuff chemistry, because the latter are held in place both by wide usage and by venerable authorities, such as the Colour Index.
期刊介绍:
Biotechnic & Histochemistry (formerly Stain technology) is the
official publication of the Biological Stain Commission. The journal has been in continuous publication since 1926.
Biotechnic & Histochemistry is an interdisciplinary journal that embraces all aspects of techniques for visualizing biological processes and entities in cells, tissues and organisms; papers that describe experimental work that employs such investigative methods are appropriate for publication as well.
Papers concerning topics as diverse as applications of histochemistry, immunohistochemistry, in situ hybridization, cytochemical probes, autoradiography, light and electron microscopy, tissue culture, in vivo and in vitro studies, image analysis, cytogenetics, automation or computerization of investigative procedures and other investigative approaches are appropriate for publication regardless of their length. Letters to the Editor and review articles concerning topics of special and current interest also are welcome.