大型动物对凋落物分解影响的气候依赖性——全球元回归分析。

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2023-10-24 DOI:10.1111/ele.14333
Nevo Sagi, Dror Hawlena
{"title":"大型动物对凋落物分解影响的气候依赖性——全球元回归分析。","authors":"Nevo Sagi,&nbsp;Dror Hawlena","doi":"10.1111/ele.14333","DOIUrl":null,"url":null,"abstract":"<p>Litter decomposition by microorganisms and animals is influenced by climate and has been found to be higher in warm and wet than in cold and dry biomes. We, however, hypothesized that the macrofaunal effect on decomposition should increase with temperature and aridity since larger animals are more tolerant to aridity than smaller organisms. This hypothesis was supported by our global analysis of macrofauna exclusion studies. Macrofauna increased litter mass loss on average by 40%, twofold higher than the highest previous estimation of macrofaunal effect on decomposition. The strongest effect was found in subtropical deserts where faunal decomposition had not been considered important. Our results highlight the need to consider animal size when exploring climate dependence of faunal decomposition, and the disproportionately large role of macrofauna in regulating litter decomposition in warm drylands. This new realization is critical for understanding element cycling in the face of global warming and aridification.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14333","citationCount":"0","resultStr":"{\"title\":\"Climate dependence of the macrofaunal effect on litter decomposition—A global meta-regression analysis\",\"authors\":\"Nevo Sagi,&nbsp;Dror Hawlena\",\"doi\":\"10.1111/ele.14333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Litter decomposition by microorganisms and animals is influenced by climate and has been found to be higher in warm and wet than in cold and dry biomes. We, however, hypothesized that the macrofaunal effect on decomposition should increase with temperature and aridity since larger animals are more tolerant to aridity than smaller organisms. This hypothesis was supported by our global analysis of macrofauna exclusion studies. Macrofauna increased litter mass loss on average by 40%, twofold higher than the highest previous estimation of macrofaunal effect on decomposition. The strongest effect was found in subtropical deserts where faunal decomposition had not been considered important. Our results highlight the need to consider animal size when exploring climate dependence of faunal decomposition, and the disproportionately large role of macrofauna in regulating litter decomposition in warm drylands. This new realization is critical for understanding element cycling in the face of global warming and aridification.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14333\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14333\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14333","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物和动物的垃圾分解受到气候的影响,在温暖和潮湿的生物群落中,垃圾分解率高于寒冷和干燥的生物群落。然而,我们假设,大型动物对分解的影响应该随着温度和干旱度的增加而增加,因为大型动物比小型生物更能忍受干旱。这一假设得到了我们对大型动物排除研究的全球分析的支持。大型动物平均增加了40%的垃圾质量损失,比之前对大型动物对分解影响的最高估计高出两倍。在亚热带沙漠中发现了最强的影响,那里的动物分解并不重要。我们的研究结果强调,在探索动物群分解对气候的依赖性时,需要考虑动物的大小,以及大型动物群在调节温暖旱地枯枝落叶分解方面的巨大作用。这一新认识对于理解面对全球变暖和干旱的元素循环至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Climate dependence of the macrofaunal effect on litter decomposition—A global meta-regression analysis

Climate dependence of the macrofaunal effect on litter decomposition—A global meta-regression analysis

Litter decomposition by microorganisms and animals is influenced by climate and has been found to be higher in warm and wet than in cold and dry biomes. We, however, hypothesized that the macrofaunal effect on decomposition should increase with temperature and aridity since larger animals are more tolerant to aridity than smaller organisms. This hypothesis was supported by our global analysis of macrofauna exclusion studies. Macrofauna increased litter mass loss on average by 40%, twofold higher than the highest previous estimation of macrofaunal effect on decomposition. The strongest effect was found in subtropical deserts where faunal decomposition had not been considered important. Our results highlight the need to consider animal size when exploring climate dependence of faunal decomposition, and the disproportionately large role of macrofauna in regulating litter decomposition in warm drylands. This new realization is critical for understanding element cycling in the face of global warming and aridification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信