Giorgio Laguzzi, Heike Mildenberger, Brendan Stuber-Rousselle
{"title":"关于劈树","authors":"Giorgio Laguzzi, Heike Mildenberger, Brendan Stuber-Rousselle","doi":"10.1002/malq.202200022","DOIUrl":null,"url":null,"abstract":"<p>We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any <i>absolute</i> amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that <math>\n <semantics>\n <mrow>\n <mo>add</mo>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>SP</mi>\n </msub>\n <mo>)</mo>\n <mo>≤</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$\\operatorname{add}(\\mathcal {I}_\\mathbb {SP}) \\le \\mathfrak {b}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200022","citationCount":"1","resultStr":"{\"title\":\"On splitting trees\",\"authors\":\"Giorgio Laguzzi, Heike Mildenberger, Brendan Stuber-Rousselle\",\"doi\":\"10.1002/malq.202200022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any <i>absolute</i> amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that <math>\\n <semantics>\\n <mrow>\\n <mo>add</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>SP</mi>\\n </msub>\\n <mo>)</mo>\\n <mo>≤</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{add}(\\\\mathcal {I}_\\\\mathbb {SP}) \\\\le \\\\mathfrak {b}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200022\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any absolute amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that .