不可比Vγ$V_\gamma$-度

Pub Date : 2023-05-26 DOI:10.1002/malq.202200034
Teng Zhang
{"title":"不可比Vγ$V_\\gamma$-度","authors":"Teng Zhang","doi":"10.1002/malq.202200034","DOIUrl":null,"url":null,"abstract":"<p>In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size <math>\n <semantics>\n <msup>\n <mi>γ</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\gamma ^\\omega$</annotation>\n </semantics></math> antichain of Zermelo degrees. We consider this question for the <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>γ</mi>\n </msub>\n <annotation>$V_\\gamma$</annotation>\n </semantics></math>-degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are <math>\n <semantics>\n <msup>\n <mi>γ</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\gamma ^\\omega$</annotation>\n </semantics></math>-many pairwise incomparable <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>γ</mi>\n </msub>\n <annotation>$V_\\gamma$</annotation>\n </semantics></math>-degrees, where γ is the limit of the ω-sequence of measurable cardinals.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incomparable \\n \\n \\n V\\n γ\\n \\n $V_\\\\gamma$\\n -degrees\",\"authors\":\"Teng Zhang\",\"doi\":\"10.1002/malq.202200034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size <math>\\n <semantics>\\n <msup>\\n <mi>γ</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\gamma ^\\\\omega$</annotation>\\n </semantics></math> antichain of Zermelo degrees. We consider this question for the <math>\\n <semantics>\\n <msub>\\n <mi>V</mi>\\n <mi>γ</mi>\\n </msub>\\n <annotation>$V_\\\\gamma$</annotation>\\n </semantics></math>-degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are <math>\\n <semantics>\\n <msup>\\n <mi>γ</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\gamma ^\\\\omega$</annotation>\\n </semantics></math>-many pairwise incomparable <math>\\n <semantics>\\n <msub>\\n <mi>V</mi>\\n <mi>γ</mi>\\n </msub>\\n <annotation>$V_\\\\gamma$</annotation>\\n </semantics></math>-degrees, where γ is the limit of the ω-sequence of measurable cardinals.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在[3]中,Shi证明了在γ上存在不可比的Zermelo度,如果存在一个ω-可测基数序列,其极限为γ。他问是否存在Zermelo度的γω$\gamma^\omega$反链大小。我们考虑Vγ$V_\gamma$-度结构的这个问题。我们使用一种Prikry型强迫来证明,如果存在可测量基数的ω-序列,则存在γω$\gamma^\omega$-许多成对不可比的Vγ$V_\gamma$-度,其中γ是可测量基数的ω-序列的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Incomparable V γ $V_\gamma$ -degrees

In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size γ ω $\gamma ^\omega$ antichain of Zermelo degrees. We consider this question for the V γ $V_\gamma$ -degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are γ ω $\gamma ^\omega$ -many pairwise incomparable V γ $V_\gamma$ -degrees, where γ is the limit of the ω-sequence of measurable cardinals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信