{"title":"不可比Vγ$V_\\gamma$-度","authors":"Teng Zhang","doi":"10.1002/malq.202200034","DOIUrl":null,"url":null,"abstract":"<p>In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size <math>\n <semantics>\n <msup>\n <mi>γ</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\gamma ^\\omega$</annotation>\n </semantics></math> antichain of Zermelo degrees. We consider this question for the <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>γ</mi>\n </msub>\n <annotation>$V_\\gamma$</annotation>\n </semantics></math>-degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are <math>\n <semantics>\n <msup>\n <mi>γ</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\gamma ^\\omega$</annotation>\n </semantics></math>-many pairwise incomparable <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>γ</mi>\n </msub>\n <annotation>$V_\\gamma$</annotation>\n </semantics></math>-degrees, where γ is the limit of the ω-sequence of measurable cardinals.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incomparable \\n \\n \\n V\\n γ\\n \\n $V_\\\\gamma$\\n -degrees\",\"authors\":\"Teng Zhang\",\"doi\":\"10.1002/malq.202200034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size <math>\\n <semantics>\\n <msup>\\n <mi>γ</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\gamma ^\\\\omega$</annotation>\\n </semantics></math> antichain of Zermelo degrees. We consider this question for the <math>\\n <semantics>\\n <msub>\\n <mi>V</mi>\\n <mi>γ</mi>\\n </msub>\\n <annotation>$V_\\\\gamma$</annotation>\\n </semantics></math>-degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are <math>\\n <semantics>\\n <msup>\\n <mi>γ</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\gamma ^\\\\omega$</annotation>\\n </semantics></math>-many pairwise incomparable <math>\\n <semantics>\\n <msub>\\n <mi>V</mi>\\n <mi>γ</mi>\\n </msub>\\n <annotation>$V_\\\\gamma$</annotation>\\n </semantics></math>-degrees, where γ is the limit of the ω-sequence of measurable cardinals.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In [3], Shi proved that there exist incomparable Zermelo degrees at γ if there exists an ω-sequence of measurable cardinals, whose limit is γ. He asked whether there is a size antichain of Zermelo degrees. We consider this question for the -degree structure. We use a kind of Prikry-type forcing to show that if there is an ω-sequence of measurable cardinals, then there are -many pairwise incomparable -degrees, where γ is the limit of the ω-sequence of measurable cardinals.