{"title":"潜在回归模型中贝叶斯变量选择的全吉布斯采样算法","authors":"Kazuhiro Yamaguchi, Jihong Zhang","doi":"10.1111/jedm.12348","DOIUrl":null,"url":null,"abstract":"<p>This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were compared to a uniform prior case in both simulation and real data analysis. The simulation study revealed that two types of horseshoe priors had a smaller root mean square errors and shorter 95% credible interval lengths than double-exponential or uniform priors. In addition, the horseshoe+ prior was slightly more stable than the horseshoe prior. The real data example successfully proved the utility of horseshoe and horseshoe+ priors in selecting effective predictive covariates for math achievement.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"60 2","pages":"202-234"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Gibbs Sampling Algorithms for Bayesian Variable Selection in Latent Regression Models\",\"authors\":\"Kazuhiro Yamaguchi, Jihong Zhang\",\"doi\":\"10.1111/jedm.12348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were compared to a uniform prior case in both simulation and real data analysis. The simulation study revealed that two types of horseshoe priors had a smaller root mean square errors and shorter 95% credible interval lengths than double-exponential or uniform priors. In addition, the horseshoe+ prior was slightly more stable than the horseshoe prior. The real data example successfully proved the utility of horseshoe and horseshoe+ priors in selecting effective predictive covariates for math achievement.</p>\",\"PeriodicalId\":47871,\"journal\":{\"name\":\"Journal of Educational Measurement\",\"volume\":\"60 2\",\"pages\":\"202-234\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12348\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12348","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
Fully Gibbs Sampling Algorithms for Bayesian Variable Selection in Latent Regression Models
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were compared to a uniform prior case in both simulation and real data analysis. The simulation study revealed that two types of horseshoe priors had a smaller root mean square errors and shorter 95% credible interval lengths than double-exponential or uniform priors. In addition, the horseshoe+ prior was slightly more stable than the horseshoe prior. The real data example successfully proved the utility of horseshoe and horseshoe+ priors in selecting effective predictive covariates for math achievement.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.