DBD等离子体辅助金属醇盐在锂硫电池硫粉上的涂层

Ahmed Shafique, Annick Vanhulsel, Vijay S. Rangasamy, Kitty Baert, Tom Hauffman, Peter Adriaensens, Mohammadhosein Safari, Marlies K. Van Bael, An Hardy, Sébastien Sallard
{"title":"DBD等离子体辅助金属醇盐在锂硫电池硫粉上的涂层","authors":"Ahmed Shafique,&nbsp;Annick Vanhulsel,&nbsp;Vijay S. Rangasamy,&nbsp;Kitty Baert,&nbsp;Tom Hauffman,&nbsp;Peter Adriaensens,&nbsp;Mohammadhosein Safari,&nbsp;Marlies K. Van Bael,&nbsp;An Hardy,&nbsp;Sébastien Sallard","doi":"10.1002/bte2.20220053","DOIUrl":null,"url":null,"abstract":"<p>Sulfur particles coated by activation of metal alkoxide precursors, aluminum–sulfur (Alu–S) and vanadium–sulfur (Van–S), were produced by dielectric barrier discharge (DBD) plasma technology under low temperature and ambient pressure conditions. We report a safe, solvent-free, low-cost, and low-energy consumption coating process that is compatible for sustainable technology up-scaling. NMR, XPS, SEM, and XRD characterization methods were used to determine the chemical characteristics and the superior behavior of Li–S cells using metal oxide-based coated sulfur materials. The chemical composition of the coatings is a mixture of the different elements present in the metal alkoxide precursor. The presence of alumina Al<sub>2</sub>O<sub>3</sub> within the coating was confirmed. Multi-C rate and long-term galvanostatic cycling at rate C/10 showed that the rate capability losses and capacity fade could be highly mitigated for the Li–S cells containing the coated sulfur materials in comparison to the references uncoated (raw) sulfur. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirm the lower charge-transfer resistance and potential hysteresis in the electrodes containing the coated sulfur particles. Our results show that the electrochemical performance of the Li–S cells based on the different coating materials can be ranked as Alu-S &gt; Van-S &gt; Raw sulfur.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20220053","citationCount":"1","resultStr":"{\"title\":\"DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteries\",\"authors\":\"Ahmed Shafique,&nbsp;Annick Vanhulsel,&nbsp;Vijay S. Rangasamy,&nbsp;Kitty Baert,&nbsp;Tom Hauffman,&nbsp;Peter Adriaensens,&nbsp;Mohammadhosein Safari,&nbsp;Marlies K. Van Bael,&nbsp;An Hardy,&nbsp;Sébastien Sallard\",\"doi\":\"10.1002/bte2.20220053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sulfur particles coated by activation of metal alkoxide precursors, aluminum–sulfur (Alu–S) and vanadium–sulfur (Van–S), were produced by dielectric barrier discharge (DBD) plasma technology under low temperature and ambient pressure conditions. We report a safe, solvent-free, low-cost, and low-energy consumption coating process that is compatible for sustainable technology up-scaling. NMR, XPS, SEM, and XRD characterization methods were used to determine the chemical characteristics and the superior behavior of Li–S cells using metal oxide-based coated sulfur materials. The chemical composition of the coatings is a mixture of the different elements present in the metal alkoxide precursor. The presence of alumina Al<sub>2</sub>O<sub>3</sub> within the coating was confirmed. Multi-C rate and long-term galvanostatic cycling at rate C/10 showed that the rate capability losses and capacity fade could be highly mitigated for the Li–S cells containing the coated sulfur materials in comparison to the references uncoated (raw) sulfur. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirm the lower charge-transfer resistance and potential hysteresis in the electrodes containing the coated sulfur particles. Our results show that the electrochemical performance of the Li–S cells based on the different coating materials can be ranked as Alu-S &gt; Van-S &gt; Raw sulfur.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20220053\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20220053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20220053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用介质阻挡放电(DBD)等离子体技术,在低温常压条件下制备了金属醇盐前体铝-硫(Alu–S)和钒-硫(Van–S)活化包覆的硫颗粒。我们报告了一种安全、无溶剂、低成本和低能耗的涂层工艺,该工艺与可持续技术的扩展兼容。使用NMR、XPS、SEM和XRD表征方法来确定使用金属氧化物基涂层硫材料的Li–S电池的化学特性和优异行为。涂层的化学成分是金属醇盐前体中存在的不同元素的混合物。确认了氧化铝Al2O3在涂层内的存在。多C速率和C/10速率下的长期恒流循环表明,与参考未涂覆(原始)硫相比,含有涂覆硫材料的Li–S电池的速率-容量损失和容量衰减可以得到高度缓解。电化学阻抗谱(EIS)和循环伏安法(CV)证实了含有涂层硫颗粒的电极中较低的电荷转移电阻和电位滞后。我们的结果表明,基于不同涂层材料的Li–S电池的电化学性能可以归类为Alu-S >; Van-S >; 生硫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteries

DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteries

Sulfur particles coated by activation of metal alkoxide precursors, aluminum–sulfur (Alu–S) and vanadium–sulfur (Van–S), were produced by dielectric barrier discharge (DBD) plasma technology under low temperature and ambient pressure conditions. We report a safe, solvent-free, low-cost, and low-energy consumption coating process that is compatible for sustainable technology up-scaling. NMR, XPS, SEM, and XRD characterization methods were used to determine the chemical characteristics and the superior behavior of Li–S cells using metal oxide-based coated sulfur materials. The chemical composition of the coatings is a mixture of the different elements present in the metal alkoxide precursor. The presence of alumina Al2O3 within the coating was confirmed. Multi-C rate and long-term galvanostatic cycling at rate C/10 showed that the rate capability losses and capacity fade could be highly mitigated for the Li–S cells containing the coated sulfur materials in comparison to the references uncoated (raw) sulfur. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirm the lower charge-transfer resistance and potential hysteresis in the electrodes containing the coated sulfur particles. Our results show that the electrochemical performance of the Li–S cells based on the different coating materials can be ranked as Alu-S > Van-S > Raw sulfur.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信