谱半径上某些Nordhaus–Gaddum型结果的推广

IF 0.5 4区 数学 Q3 MATHEMATICS
Junying Lu, Lanchao Wang, Yaojun Chen
{"title":"谱半径上某些Nordhaus–Gaddum型结果的推广","authors":"Junying Lu,&nbsp;Lanchao Wang,&nbsp;Yaojun Chen","doi":"10.1002/jcd.21919","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be a simple graph and <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)$</annotation>\n </semantics></math> the spectral radius of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. For <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge 2$</annotation>\n </semantics></math>, a <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-edge decomposition <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>H</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>H</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({H}_{1},{\\rm{\\ldots }},{H}_{k})$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> spanning subgraphs such that their edge sets form a <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-partition of the edge set of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In this paper, we obtain some sharp lower and upper bounds for <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>H</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>H</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda ({H}_{1})+\\,\\cdots \\,+\\lambda ({H}_{k})$</annotation>\n </semantics></math> in terms of the clique number of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${H}_{i}$</annotation>\n </semantics></math> and the size of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and discuss what <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-edge decomposition <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>H</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>H</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({H}_{1},{\\rm{\\ldots }},{H}_{k})$</annotation>\n </semantics></math> can maximize <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>H</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>H</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda ({H}_{1})+\\cdots \\,+\\lambda ({H}_{k})$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a complete graph. These generalize some Nordhaus–Gaddum-type results on spectral radius for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math>, due to Nosal, Hong and Shu, and Nikiforov.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 12","pages":"701-712"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of some Nordhaus–Gaddum-type results on spectral radius\",\"authors\":\"Junying Lu,&nbsp;Lanchao Wang,&nbsp;Yaojun Chen\",\"doi\":\"10.1002/jcd.21919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be a simple graph and <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda (G)$</annotation>\\n </semantics></math> the spectral radius of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. For <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $k\\\\ge 2$</annotation>\\n </semantics></math>, a <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-edge decomposition <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({H}_{1},{\\\\rm{\\\\ldots }},{H}_{k})$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> spanning subgraphs such that their edge sets form a <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-partition of the edge set of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In this paper, we obtain some sharp lower and upper bounds for <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda ({H}_{1})+\\\\,\\\\cdots \\\\,+\\\\lambda ({H}_{k})$</annotation>\\n </semantics></math> in terms of the clique number of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${H}_{i}$</annotation>\\n </semantics></math> and the size of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and discuss what <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-edge decomposition <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({H}_{1},{\\\\rm{\\\\ldots }},{H}_{k})$</annotation>\\n </semantics></math> can maximize <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda ({H}_{1})+\\\\cdots \\\\,+\\\\lambda ({H}_{k})$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a complete graph. These generalize some Nordhaus–Gaddum-type results on spectral radius for <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $k=2$</annotation>\\n </semantics></math>, due to Nosal, Hong and Shu, and Nikiforov.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 12\",\"pages\":\"701-712\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21919\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21919","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G$G$是一个简单图,λ(G)$\lambda(G)$是谱G$G$的半径。对于k≥2$k\ge 2$,k$k$边分解(h1,…,Hk)$({H}_{1} ,{\rm{\ldots}},{H}_{k} )$是k$k$生成子图,使得它们的边集形成G$G$的边集的k$k$-划分。在本文中,我们得到了λ(H1)+…+λ(H k)$\lambda({H}_{1} )+\,\cdots\,+\lambda({H}_{k} )$根据H i的集团数${H}_{i} $和G$G$的大小,并讨论什么是k$k$-边分解(h1,…,Hk)$({H}_{1} ,{\rm{\ldots}},{H}_{k} )$可以最大化λ(H1)+…+λ(H k)$\lambda({H}_{1} )+\cdots\,+\lambda({H}_{k} )$,当G$G$是一个完全图时。这些结果推广了Nosal、Hong和Shu以及Nikiforov关于k=2$k=2$的谱半径的一些Nordhaus–Gaddum型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizations of some Nordhaus–Gaddum-type results on spectral radius

Let G $G$ be a simple graph and λ ( G ) $\lambda (G)$ the spectral radius of G $G$ . For k 2 $k\ge 2$ , a k $k$ -edge decomposition ( H 1 , , H k ) $({H}_{1},{\rm{\ldots }},{H}_{k})$ is k $k$ spanning subgraphs such that their edge sets form a k $k$ -partition of the edge set of G $G$ . In this paper, we obtain some sharp lower and upper bounds for λ ( H 1 ) + + λ ( H k ) $\lambda ({H}_{1})+\,\cdots \,+\lambda ({H}_{k})$ in terms of the clique number of H i ${H}_{i}$ and the size of G $G$ , and discuss what k $k$ -edge decomposition ( H 1 , , H k ) $({H}_{1},{\rm{\ldots }},{H}_{k})$ can maximize λ ( H 1 ) + + λ ( H k ) $\lambda ({H}_{1})+\cdots \,+\lambda ({H}_{k})$ when G $G$ is a complete graph. These generalize some Nordhaus–Gaddum-type results on spectral radius for k = 2 $k=2$ , due to Nosal, Hong and Shu, and Nikiforov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信