用于扩展无线声学传感器网络的闭环解决方案

IF 1.5 Q3 TELECOMMUNICATIONS
Kashyap Patel, Anton Kovalyov, Issa Panahi
{"title":"用于扩展无线声学传感器网络的闭环解决方案","authors":"Kashyap Patel,&nbsp;Anton Kovalyov,&nbsp;Issa Panahi","doi":"10.1049/wss2.12067","DOIUrl":null,"url":null,"abstract":"<p>A closed-form solution for localising and synchronising an acoustic sensor node with respect to a Wireless Acoustic Sensor Network (WASN) is presented. The aim is to allow efficient scaling of a WASN by individually calibrating newly joined sensor nodes instead of recalibrating the entire array. A key contribution is that the sensor to be calibrated does not need to include a built-in emitter. The proposed method uses signals emitted from spatially distributed sources to compute time difference of arrival (TDOA) measurements between the existing WASN and a new sensor. The problem is then modelled as a set of multivariate non-linear TDOA equations. Through a simple transformation, the non-linear TDOA equations are converted into a system of linear equations. Then, weighted least squares is applied to find an accurate estimate of the calibration parameters. Signal sources can either be known emitters within the existing WASN or arbitrary sources in the environment, thus allowing for flexible applicability in both active and passive calibration scenarios. Simulation results under various conditions show high joint localisation and synchronisation performance, often compared to the Cramér-Rao lower bound.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12067","citationCount":"0","resultStr":"{\"title\":\"Closed-form solution for scaling a wireless acoustic sensor network\",\"authors\":\"Kashyap Patel,&nbsp;Anton Kovalyov,&nbsp;Issa Panahi\",\"doi\":\"10.1049/wss2.12067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A closed-form solution for localising and synchronising an acoustic sensor node with respect to a Wireless Acoustic Sensor Network (WASN) is presented. The aim is to allow efficient scaling of a WASN by individually calibrating newly joined sensor nodes instead of recalibrating the entire array. A key contribution is that the sensor to be calibrated does not need to include a built-in emitter. The proposed method uses signals emitted from spatially distributed sources to compute time difference of arrival (TDOA) measurements between the existing WASN and a new sensor. The problem is then modelled as a set of multivariate non-linear TDOA equations. Through a simple transformation, the non-linear TDOA equations are converted into a system of linear equations. Then, weighted least squares is applied to find an accurate estimate of the calibration parameters. Signal sources can either be known emitters within the existing WASN or arbitrary sources in the environment, thus allowing for flexible applicability in both active and passive calibration scenarios. Simulation results under various conditions show high joint localisation and synchronisation performance, often compared to the Cramér-Rao lower bound.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于相对于无线声学传感器网络(WASN)定位和同步声学传感器节点的闭环解决方案。其目的是通过单独校准新加入的传感器节点而不是重新校准整个阵列来实现WASN的有效缩放。一个关键贡献是要校准的传感器不需要包括内置发射器。所提出的方法使用从空间分布源发射的信号来计算现有WASN和新传感器之间的到达时间差(TDOA)测量。然后将该问题建模为一组多元非线性时差方程。通过简单的变换,将非线性时差方程转化为线性方程组。然后,应用加权最小二乘法来找到校准参数的精确估计。信号源可以是现有WASN内的已知发射器,也可以是环境中的任意源,从而允许在主动和被动校准场景中灵活应用。在各种条件下的仿真结果显示了高的联合定位和同步性能,通常与Cramér-Rao下界相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Closed-form solution for scaling a wireless acoustic sensor network

Closed-form solution for scaling a wireless acoustic sensor network

A closed-form solution for localising and synchronising an acoustic sensor node with respect to a Wireless Acoustic Sensor Network (WASN) is presented. The aim is to allow efficient scaling of a WASN by individually calibrating newly joined sensor nodes instead of recalibrating the entire array. A key contribution is that the sensor to be calibrated does not need to include a built-in emitter. The proposed method uses signals emitted from spatially distributed sources to compute time difference of arrival (TDOA) measurements between the existing WASN and a new sensor. The problem is then modelled as a set of multivariate non-linear TDOA equations. Through a simple transformation, the non-linear TDOA equations are converted into a system of linear equations. Then, weighted least squares is applied to find an accurate estimate of the calibration parameters. Signal sources can either be known emitters within the existing WASN or arbitrary sources in the environment, thus allowing for flexible applicability in both active and passive calibration scenarios. Simulation results under various conditions show high joint localisation and synchronisation performance, often compared to the Cramér-Rao lower bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信