Benedikt Peter, Daniela Stoeckel, Torsten Scherer, Christian Kuebel, Christina Roth, Julia Melke
{"title":"催化剂载体形态对三维电极结构和聚合物电解质膜燃料电池性能的影响","authors":"Benedikt Peter, Daniela Stoeckel, Torsten Scherer, Christian Kuebel, Christina Roth, Julia Melke","doi":"10.1002/elsa.202100121","DOIUrl":null,"url":null,"abstract":"<p>Porous carbon-based electrodes are frequently applied in electrochemical energy technologies, for instance in fuel cells and redox flow batteries. In previous work, we observed that the final structure of a fuel cell electrode is dominated by both the morphology of the support material and its processing into a 3D porous structure. Herein, the impact of catalyst support morphology on the performance of polymer electrolyte membrane fuel cells was studied comparing carbon-supported platinum catalysts only differing in the shape of the carbon support material with otherwise similar features. Carbon-supported Pt catalysts were obtained by carbonization of polyaniline (PANI) in long fibrous, short fibrous, and granular shape. The chemical identity of the PANI precursors was demonstrated by FTIR spectroscopy and elemental analysis (EA). The final carbon-supported platinum catalysts were characterized by EA, Raman spectroscopy, XRD, and TEM exhibiting similar degree of carbonization, nanoparticle size, and nanoparticle dispersion. The effect of support morphology and the resulting differences in the 3D structure of the porous electrode were investigated by focused ion beam-scanning electron microscopy slice and view technique and correlated to their fuel cell performance.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"3 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100121","citationCount":"0","resultStr":"{\"title\":\"Impact of catalyst support morphology on 3D electrode structure and polymer electrolyte membrane fuel cell performance\",\"authors\":\"Benedikt Peter, Daniela Stoeckel, Torsten Scherer, Christian Kuebel, Christina Roth, Julia Melke\",\"doi\":\"10.1002/elsa.202100121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous carbon-based electrodes are frequently applied in electrochemical energy technologies, for instance in fuel cells and redox flow batteries. In previous work, we observed that the final structure of a fuel cell electrode is dominated by both the morphology of the support material and its processing into a 3D porous structure. Herein, the impact of catalyst support morphology on the performance of polymer electrolyte membrane fuel cells was studied comparing carbon-supported platinum catalysts only differing in the shape of the carbon support material with otherwise similar features. Carbon-supported Pt catalysts were obtained by carbonization of polyaniline (PANI) in long fibrous, short fibrous, and granular shape. The chemical identity of the PANI precursors was demonstrated by FTIR spectroscopy and elemental analysis (EA). The final carbon-supported platinum catalysts were characterized by EA, Raman spectroscopy, XRD, and TEM exhibiting similar degree of carbonization, nanoparticle size, and nanoparticle dispersion. The effect of support morphology and the resulting differences in the 3D structure of the porous electrode were investigated by focused ion beam-scanning electron microscopy slice and view technique and correlated to their fuel cell performance.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Impact of catalyst support morphology on 3D electrode structure and polymer electrolyte membrane fuel cell performance
Porous carbon-based electrodes are frequently applied in electrochemical energy technologies, for instance in fuel cells and redox flow batteries. In previous work, we observed that the final structure of a fuel cell electrode is dominated by both the morphology of the support material and its processing into a 3D porous structure. Herein, the impact of catalyst support morphology on the performance of polymer electrolyte membrane fuel cells was studied comparing carbon-supported platinum catalysts only differing in the shape of the carbon support material with otherwise similar features. Carbon-supported Pt catalysts were obtained by carbonization of polyaniline (PANI) in long fibrous, short fibrous, and granular shape. The chemical identity of the PANI precursors was demonstrated by FTIR spectroscopy and elemental analysis (EA). The final carbon-supported platinum catalysts were characterized by EA, Raman spectroscopy, XRD, and TEM exhibiting similar degree of carbonization, nanoparticle size, and nanoparticle dispersion. The effect of support morphology and the resulting differences in the 3D structure of the porous electrode were investigated by focused ion beam-scanning electron microscopy slice and view technique and correlated to their fuel cell performance.