紧全局简单非零和Heffter数组和biembeddings

IF 0.5 4区 数学 Q3 MATHEMATICS
Lorenzo Mella, Anita Pasotti
{"title":"紧全局简单非零和Heffter数组和biembeddings","authors":"Lorenzo Mella,&nbsp;Anita Pasotti","doi":"10.1002/jcd.21866","DOIUrl":null,"url":null,"abstract":"<p>Square relative nonzero sum Heffter arrays, denoted by <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>H</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>;</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{N}}{{\\rm{H}}}_{t}(n;k)$</annotation>\n </semantics></math>, have been introduced as a variant of the classical concept of Heffter array. An <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>H</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>;</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{N}}{{\\rm{H}}}_{t}(n;k)$</annotation>\n </semantics></math> is an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>×</mo>\n \n <mi>n</mi>\n </mrow>\n <annotation> $n\\times n$</annotation>\n </semantics></math> partially filled array with elements in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{Z}}}_{v}$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mi>t</mi>\n </mrow>\n <annotation> $v=2nk+t$</annotation>\n </semantics></math>, whose rows and whose columns contain <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> filled cells, such that the sum of the elements in every row and column is different from 0 (modulo <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>) and, for every <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> $x\\in {{\\mathbb{Z}}}_{v}$</annotation>\n </semantics></math> not belonging to the subgroup of order <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>, either <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n </mrow>\n <annotation> $x$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mo>−</mo>\n \n <mi>x</mi>\n </mrow>\n <annotation> $-x$</annotation>\n </semantics></math> appears in the array. In this paper we give direct constructions of square nonzero sum Heffter arrays with no empty cells, <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n \n <msub>\n <mi>H</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>;</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{N}}{{\\rm{H}}}_{t}(n;n)$</annotation>\n </semantics></math>, for every <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> odd, when <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> is a divisor of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> and when <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $t\\in \\{2,2n,{n}^{2},2{n}^{2}\\}$</annotation>\n </semantics></math>. The constructed arrays have also the very restrictive property of being “globally simple”; this allows us to get new orthogonal path decompositions and new biembeddings of complete multipartite graphs.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 1","pages":"41-83"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tight globally simple nonzero sum Heffter arrays and biembeddings\",\"authors\":\"Lorenzo Mella,&nbsp;Anita Pasotti\",\"doi\":\"10.1002/jcd.21866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Square relative nonzero sum Heffter arrays, denoted by <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>t</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>;</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{N}}{{\\\\rm{H}}}_{t}(n;k)$</annotation>\\n </semantics></math>, have been introduced as a variant of the classical concept of Heffter array. An <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>t</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>;</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{N}}{{\\\\rm{H}}}_{t}(n;k)$</annotation>\\n </semantics></math> is an <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>×</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $n\\\\times n$</annotation>\\n </semantics></math> partially filled array with elements in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n \\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathbb{Z}}}_{v}$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n <annotation> $v=2nk+t$</annotation>\\n </semantics></math>, whose rows and whose columns contain <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> filled cells, such that the sum of the elements in every row and column is different from 0 (modulo <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math>) and, for every <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> $x\\\\in {{\\\\mathbb{Z}}}_{v}$</annotation>\\n </semantics></math> not belonging to the subgroup of order <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>, either <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n <annotation> $x$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n <annotation> $-x$</annotation>\\n </semantics></math> appears in the array. In this paper we give direct constructions of square nonzero sum Heffter arrays with no empty cells, <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mi>t</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>;</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{N}}{{\\\\rm{H}}}_{t}(n;n)$</annotation>\\n </semantics></math>, for every <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> odd, when <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> is a divisor of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> and when <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $t\\\\in \\\\{2,2n,{n}^{2},2{n}^{2}\\\\}$</annotation>\\n </semantics></math>. The constructed arrays have also the very restrictive property of being “globally simple”; this allows us to get new orthogonal path decompositions and new biembeddings of complete multipartite graphs.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 1\",\"pages\":\"41-83\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21866\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21866","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

平方相对非零和Heffter阵列,用N H t表示(n;k)${\rm{n}}{\rm{H}}}_{t}(n;k)$,作为Heffter阵列的经典概念的变体而被引入。An N H t(n;k)$是n×n$n\timesn$用Z v${\mathbb{Z}}_{v}$中的元素部分填充的数组,其中v=2nk+t$v=2nk+t$,其行和列包含k$k$填充的单元格,使得每行和每列中的元素之和不同于0(模v$v$),对于不属于t阶子群的{\mathbb{Z}}_{v}$中的每个x∈Zv$x\$t$,x$x$或−x$-x$出现在数组中。本文给出了不含空单元的平方非零和Heffter阵列的直接构造,N H t(n;n)${\rm{n}},对于每n$n$奇数,当t$t$是n$n$的除数并且当t∈{2,2n,n2,2 n 2}$t\in\{2,2n,{n}^{2},2{n}^{2中}\}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight globally simple nonzero sum Heffter arrays and biembeddings

Square relative nonzero sum Heffter arrays, denoted by N H t ( n ; k ) ${\rm{N}}{{\rm{H}}}_{t}(n;k)$ , have been introduced as a variant of the classical concept of Heffter array. An N H t ( n ; k ) ${\rm{N}}{{\rm{H}}}_{t}(n;k)$ is an n × n $n\times n$ partially filled array with elements in Z v ${{\mathbb{Z}}}_{v}$ , where v = 2 n k + t $v=2nk+t$ , whose rows and whose columns contain k $k$ filled cells, such that the sum of the elements in every row and column is different from 0 (modulo v $v$ ) and, for every x Z v $x\in {{\mathbb{Z}}}_{v}$ not belonging to the subgroup of order t $t$ , either x $x$ or x $-x$ appears in the array. In this paper we give direct constructions of square nonzero sum Heffter arrays with no empty cells, N H t ( n ; n ) ${\rm{N}}{{\rm{H}}}_{t}(n;n)$ , for every n $n$ odd, when t $t$ is a divisor of n $n$ and when t { 2 , 2 n , n 2 , 2 n 2 } $t\in \{2,2n,{n}^{2},2{n}^{2}\}$ . The constructed arrays have also the very restrictive property of being “globally simple”; this allows us to get new orthogonal path decompositions and new biembeddings of complete multipartite graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信