使用多个接收信号特征的基于机器学习的LoRa定位

IF 1.5 Q3 TELECOMMUNICATIONS
Khondoker Ziaul Islam, David Murray, Dean Diepeveen, Michael G. K. Jones, Ferdous Sohel
{"title":"使用多个接收信号特征的基于机器学习的LoRa定位","authors":"Khondoker Ziaul Islam,&nbsp;David Murray,&nbsp;Dean Diepeveen,&nbsp;Michael G. K. Jones,&nbsp;Ferdous Sohel","doi":"10.1049/wss2.12063","DOIUrl":null,"url":null,"abstract":"<p>Low-power localisation systems are crucial for machine-to-machine communication technologies. This article investigates LoRa technology for localisation using multiple features of the received signal, such as Received Signal Strength Indicator (RSSI), Spreading Factors (SF), and Signal to Noise Ratio (SNR). A novel range-based technique to estimate the distance of a target node from a LoRa gateway using machine-learning models that incorporates SF, SNR, and RSSI to train the models is proposed. A modified trilateration approach is then used to localise the target node from three gateways. Our experiment used three LoRaWAN gateways and two sensor nodes, on a sports oval with an approximate area coverage of 30,000 square metres. The authors also used a public LoRaWAN dataset to build a model test the proposed method and compare both range-based distance mapping with trilateration and fingerprint-based direct location estimation techniques. Our method achieved an average distance error of 43.97 m on our experimental dataset. The results show that the combination of RSSI, SNR, and SF-based distance mapping provides ∼10% improvement on ranging accuracy and 26.58% higher accuracy for trilateration-based localisation when compared with just using RSSI. Our method also achieved 50% superior localisation accuracy with fingerprint-based direct location estimation approaches.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12063","citationCount":"3","resultStr":"{\"title\":\"Machine learning-based LoRa localisation using multiple received signal features\",\"authors\":\"Khondoker Ziaul Islam,&nbsp;David Murray,&nbsp;Dean Diepeveen,&nbsp;Michael G. K. Jones,&nbsp;Ferdous Sohel\",\"doi\":\"10.1049/wss2.12063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-power localisation systems are crucial for machine-to-machine communication technologies. This article investigates LoRa technology for localisation using multiple features of the received signal, such as Received Signal Strength Indicator (RSSI), Spreading Factors (SF), and Signal to Noise Ratio (SNR). A novel range-based technique to estimate the distance of a target node from a LoRa gateway using machine-learning models that incorporates SF, SNR, and RSSI to train the models is proposed. A modified trilateration approach is then used to localise the target node from three gateways. Our experiment used three LoRaWAN gateways and two sensor nodes, on a sports oval with an approximate area coverage of 30,000 square metres. The authors also used a public LoRaWAN dataset to build a model test the proposed method and compare both range-based distance mapping with trilateration and fingerprint-based direct location estimation techniques. Our method achieved an average distance error of 43.97 m on our experimental dataset. The results show that the combination of RSSI, SNR, and SF-based distance mapping provides ∼10% improvement on ranging accuracy and 26.58% higher accuracy for trilateration-based localisation when compared with just using RSSI. Our method also achieved 50% superior localisation accuracy with fingerprint-based direct location estimation approaches.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12063\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

低功耗定位系统对于机器对机器通信技术至关重要。本文研究了利用接收信号的多个特征进行定位的LoRa技术,如接收信号强度指标(RSSI)、扩频因子(SF)和信噪比(SNR)。提出了一种新的基于距离的技术,使用结合SF、SNR和RSSI的机器学习模型来训练模型,来估计目标节点与LoRa网关的距离。然后使用修改的三边测量方法从三个网关定位目标节点。我们的实验使用了三个LoRaWAN网关和两个传感器节点,位于一个面积约为30000平方米的运动椭圆上。作者还使用公共LoRaWAN数据集对所提出的方法进行了模型测试,并将基于距离的距离映射与三边测量和基于指纹的直接位置估计技术进行了比较。我们的方法在实验数据集上实现了43.97米的平均距离误差。结果表明,与仅使用RSSI相比,基于RSSI、SNR和SF的距离映射的组合在测距精度上提高了约10%,在基于三边测量的定位精度上提高26.58%。我们的方法还使用基于指纹的直接位置估计方法实现了50%的优越定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-based LoRa localisation using multiple received signal features

Machine learning-based LoRa localisation using multiple received signal features

Low-power localisation systems are crucial for machine-to-machine communication technologies. This article investigates LoRa technology for localisation using multiple features of the received signal, such as Received Signal Strength Indicator (RSSI), Spreading Factors (SF), and Signal to Noise Ratio (SNR). A novel range-based technique to estimate the distance of a target node from a LoRa gateway using machine-learning models that incorporates SF, SNR, and RSSI to train the models is proposed. A modified trilateration approach is then used to localise the target node from three gateways. Our experiment used three LoRaWAN gateways and two sensor nodes, on a sports oval with an approximate area coverage of 30,000 square metres. The authors also used a public LoRaWAN dataset to build a model test the proposed method and compare both range-based distance mapping with trilateration and fingerprint-based direct location estimation techniques. Our method achieved an average distance error of 43.97 m on our experimental dataset. The results show that the combination of RSSI, SNR, and SF-based distance mapping provides ∼10% improvement on ranging accuracy and 26.58% higher accuracy for trilateration-based localisation when compared with just using RSSI. Our method also achieved 50% superior localisation accuracy with fingerprint-based direct location estimation approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信