ω2上的共尾型

Pub Date : 2023-05-31 DOI:10.1002/malq.202200021
Borisa Kuzeljevic, Stevo Todorcevic
{"title":"ω2上的共尾型","authors":"Borisa Kuzeljevic,&nbsp;Stevo Todorcevic","doi":"10.1002/malq.202200021","DOIUrl":null,"url":null,"abstract":"<p>In this paper we start the analysis of the class <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <annotation>$\\mathcal {D}_{\\aleph _2}$</annotation>\n </semantics></math>, the class of cofinal types of directed sets of cofinality at most ℵ<sub>2</sub>. We compare elements of <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <annotation>$\\mathcal {D}_{\\aleph _2}$</annotation>\n </semantics></math> using the notion of Tukey reducibility. We isolate some simple cofinal types in <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <annotation>$\\mathcal {D}_{\\aleph _2}$</annotation>\n </semantics></math>, and then proceed to find some of these types which have an immediate successor in the Tukey ordering of <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <annotation>$\\mathcal {D}_{\\aleph _2}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cofinal types on ω2\",\"authors\":\"Borisa Kuzeljevic,&nbsp;Stevo Todorcevic\",\"doi\":\"10.1002/malq.202200021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we start the analysis of the class <math>\\n <semantics>\\n <msub>\\n <mi>D</mi>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <annotation>$\\\\mathcal {D}_{\\\\aleph _2}$</annotation>\\n </semantics></math>, the class of cofinal types of directed sets of cofinality at most ℵ<sub>2</sub>. We compare elements of <math>\\n <semantics>\\n <msub>\\n <mi>D</mi>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <annotation>$\\\\mathcal {D}_{\\\\aleph _2}$</annotation>\\n </semantics></math> using the notion of Tukey reducibility. We isolate some simple cofinal types in <math>\\n <semantics>\\n <msub>\\n <mi>D</mi>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <annotation>$\\\\mathcal {D}_{\\\\aleph _2}$</annotation>\\n </semantics></math>, and then proceed to find some of these types which have an immediate successor in the Tukey ordering of <math>\\n <semantics>\\n <msub>\\n <mi>D</mi>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <annotation>$\\\\mathcal {D}_{\\\\aleph _2}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们开始分析D类ℵ 2$\mathcal{D}_{\aleph_2}$,至多有向共尾集的一类共尾类型ℵ2.我们比较D的元素ℵ 2$\mathcal{D}_{\aleph_2}$使用Tukey可约性的概念。我们在D中分离出一些简单的共尾类型ℵ 2$\mathcal{D}_{\aleph_2}$,然后继续寻找其中一些在D的Tukey排序中具有直接后继的类型ℵ 2$\mathcal{D}_{\alph_2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cofinal types on ω2

In this paper we start the analysis of the class D 2 $\mathcal {D}_{\aleph _2}$ , the class of cofinal types of directed sets of cofinality at most ℵ2. We compare elements of D 2 $\mathcal {D}_{\aleph _2}$ using the notion of Tukey reducibility. We isolate some simple cofinal types in D 2 $\mathcal {D}_{\aleph _2}$ , and then proceed to find some of these types which have an immediate successor in the Tukey ordering of D 2 $\mathcal {D}_{\aleph _2}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信