Nurys Tatiana Hoyos Merlano, Lucas Guz, Virginia Borroni, Roberto Jorge Candal, María Lidia Herrera
{"title":"增强体几何结构对食品包装用酪蛋白酸钠/TiO2纳米复合膜物理性能的影响","authors":"Nurys Tatiana Hoyos Merlano, Lucas Guz, Virginia Borroni, Roberto Jorge Candal, María Lidia Herrera","doi":"10.1002/bip.23531","DOIUrl":null,"url":null,"abstract":"<p>Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO<sub>2</sub> prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased <i>E</i>' (341 wt%) and <i>E</i>\" (395 wt%) moduli, the Young modulus <i>E</i> (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm<sup>−1</sup> FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the geometry of reinforcement on physical properties of sodium caseinate/TiO2 nanocomposite films for applications in food packaging\",\"authors\":\"Nurys Tatiana Hoyos Merlano, Lucas Guz, Virginia Borroni, Roberto Jorge Candal, María Lidia Herrera\",\"doi\":\"10.1002/bip.23531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO<sub>2</sub> prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased <i>E</i>' (341 wt%) and <i>E</i>\\\" (395 wt%) moduli, the Young modulus <i>E</i> (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm<sup>−1</sup> FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23531\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23531","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of the geometry of reinforcement on physical properties of sodium caseinate/TiO2 nanocomposite films for applications in food packaging
Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO2 prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased E' (341 wt%) and E" (395 wt%) moduli, the Young modulus E (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm−1 FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.